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                                                    ABSTRACT 

Fast Fourier Transform (FFT) is a highly efficient procedure for computing the DFT of a finite series. 

The FFT is based on decomposition and breaking the transform into smaller transforms and combining 

them to get the total transform. FFT reduces the computation time required to compute a DFT and 

improves the performance by a factor 100 or more over direct evaluation of the DFT. DFT converts a 

finite sequence of equally spaced samples of a function into a same length sequence of equally spaced 

samples of discrete time Fourier transform which is a complex valued function of frequency. Some of 

the applications of fast fourier transform include Sound filtering, Image filtering, fast large-integer and 

polynomial multiplication, solving difference equations, etc. The main advantage of FFT is speed, 

which it gets by reducing the number of calculations needed to analyze a waveform. This project mainly 

focuses on the development of Fast Fourier transform, based on decimation in time (DIT), radix-2 

algorithm. Decimation in time(DIT) is the sequence for which we need the DFT is successively divided 

into smaller sequences and the DFTs of these subsequences are combined in a certain pattern to obtain 

the required DFT of the entire sequence. 

The Fast Fourier Transform (FFT) is one of the rudimentary operations in field of digital signal and 

image processing. The input of Fast Fourier transform has been given by a PS2 KEYBOARD using a 

test bench and output has been displayed using the waveforms on the Xilinx Design Suite. The synthesis 

results show that the computation for calculating the 32-point Fast Fourier transform is efficient in 

terms of speed. Also, FFTs are used for fault analysis, quality control, and condition monitoring of 

machines or systems in a swift way. These are the basics in wide variety of software i.e. JPG , mp3 

...etc . Yes there are few techniques faster than FFT but it is a basic building block in every processing. 

And here in this project we will understand the processing of a signal using a very fundamental FFT 

method. 
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CHAPTER-I 

INTRODUCTION 

 

1.1 Project Objective: 

 

            This project presents the design of 32-point FFT processing block. Design and 

implementation of FFT block and results are software simulated. This design computes 32-

points FFT and all the numbers follow real and signed type format is used. In this project 

the coding is done in Verilog. The FPGA synthesis and logic simulation is done using 

Xilinx Vivado Design Suite 2020.2. 

 

1.2 Introduction of DFT: 

                

            As the name implies, the Discrete Fourier Transform (DFT) is purely discrete: 

discrete-time data sets are converted into a discrete-frequency representation. This is in 

contrast to the DTFT that uses discrete time, but converts to continuous frequency. Since 

the resulting frequency information is discrete in nature, it is very common for computers 

to use DFT (Discrete fourier Transform) calculations when frequency information is 

needed. 

            Using a series of mathematical tricks and generalizations, there is an algorithm for 

computing the DFT that is very fast on modern computers. This algorithm is known as 

the Fast Fourier Transform (FFT), and produces the same results as the normal DFT, in 

a fraction of the computational time as ordinary DFT calculations. 

            The Discrete Fourier Transform is a numerical variant of the Fourier Transform. 

Specifically, given a vector of n input amplitudes such as {f0, f1, f2, ... , fn-2, fn-1}, the 

Discrete Fourier Transform yields a set of n frequency magnitudes. 
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The DFT is defined as such: 

 
 

 

1.3 Visualization of Discrete Fourier Transform: 

            It may be easily seen that the term e^(-πt) represents a unit vector in the complex 

plane, for any value of j and k. The angle of the vector is initially 0 radians (along the real 

axis) for j=0 or k=0. As j and k increase, the angle is increased in units of 1/nth of a circle. 

The total angle therefore becomes 2π*jk/n radians. 

            To understand the meaning of the Discrete Fourier Transform, it becomes effective 

to write the transform in matrix form, depicting the complex terms pictorally. 

For example, with n=8 , the fourier transform can be written: 
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            The top row (or the left-hand column) changes not at all; therefore, F0 is the 

resultant when the amplitudes augment each other. The second row changes by 1/nth of a 

circle, going from left to right. The third row changes by 2/nth s of a circle; the fourth row 

changes by 3/nth s of a circle; the fifth row, here, changes by 4/nth s = 4/8 = 1/2 a circle. 

Therefore, F4 is the resultant when the even terms are set at odds with the odd terms. 

            We therefore see from the square matrix that the DFT is the resultant of all 2-D 

vector combinations of the input amplitudes. 

 

1.4 Introduction to FFT: 

             FFT are very important mathematical tools for carrying out these tasks. FFT 

procedure is followed to find DFTs of a complex signal with a less complex multiplication 

and less addition. FFT is an algorithm that computes the discrete Fourier transform of a 

sequence. Discrete Fourier Transform (DFT) is used to derive the frequency 

domain(spectral) representation of the signal. DFT is one of the most powerful tools in 

digital signal processing as it enables us to find the spectrum of a finite duration signal. 

The DFT provides a representation of finite duration sequence using a periodic sequence, 

where one period of this periodic sequence is the same as the finite duration sequence. As 

a result, we can use discrete Fourier series to derive the DFT equations. Fourier analysis 

converts a signal from its original domain to a representation in the frequency domain. The 

FFT operates by decomposing an N-point time domain signal into N time domain signal 

each composed of a single point. The second step is to calculate the N frequency spectra 

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a 

single frequency spectrum. The output of Fourier transform is a complex number and has 

a much greater range than the image in the spatial domain.  

            FFT is an efficient implementation of DFT, and is used, apart from other fields, in 

digital image processing. Fast Fourier Transform is applied to convert an image from the 

spatial domain to the frequency domain. Applying filters to images in frequency domain is 



13 
 

computationally faster than to do the same in the image domain. FFT turns the complicated 

convolution operations into simple multiplications. FFT is the core of the signal and image 

processing in this modern era. There are a few techniques that are faster than DFT but FFT 

is the basic building block in each and every processing. The calculation required to find 

DFT in FFT is very less as compared to formula-based method or by a matrix-based method 

to find the DFT. The computation efficiency is achieved if we adopt divide and conquer 

approach. This approach is based on the decomposition of N-point DFT into smaller DFT. 

This basic approach leads to a family of efficient computational algorithm known as FFT 

algorithm. So, any software use FFT algorithm to find DFT like MATLAB, octave, etc. 

FFT also reduces the number of computations needed for a problem of size N from O(N^2) 

to O(N logN). DFT is widely employed in signal processing and related fields to analyze 

frequencies contained in a sample signal, to solve partial differential equations, and to 

perform other operations such as convolutions. Some other applications of FFT are used in 

digital recording, sampling, additive synthesis, vibration analysis, optics, quantum 

mechanics, etc. 
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     CHAPTER – 2 

 

FFT AND ITS MATHEMATICAL CALCULATIONS 

 

2.1 Introduction: 

            The DFT converts a time-domain sequence into an equivalent frequency-domain 

sequence. The inverse DFT performs the reverse operation and converts a frequency-domain 

sequence into an equivalent time-domain sequence. The FFT is a very efficient algorithm 

technique based on the DFT but with fewer computations required. The FFT is one of the most 

commonly used operations in digital signal processing to provide a frequency spectrum 

analysis. Two different procedures are introduced to compute an FFT: the decimation-in-

frequency and the decimation-in-time. Several variants of the FFT have been used, such as the 

Winograd transform, the discrete cosine transform (DCT), the discrete Hartley transform and 

the fast Hartley transform (FHT). Transform methods such as the DCT have become 

increasingly popular in recent years, especially for real-time systems. They provide a large 

compression ratio. 

            Fourier Transform decomposes an image into its real and imaginary components which 

is a representation of the image in the frequency domain. If the input signal is an image then 

the number of frequencies in the frequency domain is equal to the number of pixels in the 

image or spatial domain. The inverse transform re-transforms the frequencies to the image in 

the spatial domain. One of the most important things to understand about the Discrete Fourier 

Transform is the tradeoff between time and frequency resolution. 

            The sampling rate determines the maximum frequency we can represent in our data, 

which is half the sampling rate, known as the Nyquist rate. But the frequency resolution is 

largely independent of sample rate. If we transform one second of data, the frequency 

resolution we get is one Hertz. 

            For example at 44,100 samples per second, one second of data would require a 44,100 

length DFT, whose 44,100 outputs are the amplitude and phase of each frequency in 1 Hertz 

steps. 

            In order to get such an accurate frequency resolution we needed a relatively long 

sample. In the case of something like music, the sound is going to change a fair amount over 

that one second. If we want to model how the frequency content changes with time, we have 
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to analyze successive shorter snippets. We might analyze 50 msec long clips. The DFT of those 

will have a resolution of 1/.050 = 20 Hertz. 

            In other words, if we’re willing to know our time only to the nearest second, we can 

know our frequency content to a one Hertz resolution. When we focus on a more concentrated 

time interval of 50 milliseconds, we can only get 20 Hertz resolution. 

            So we decide the length of our FFT based on the sample rate and the frequency 

resolution we desire. We trade frequency resolution for time resolution by taking multiple 

FFTs, hopping along a longer signal. That’s sometimes called the Short Time Fourier 

Transform. 

            Direct DFT calculation requires a computational complexity of O (N^2 ). By using The 

Cooley-Turkey FFT algorithm, the complexity can be reduced to O (Nlog2N). 

 

2.2 COOLEY-TUKEY FFT algorithm: 

            The most popular Cooley-Tukey FFTs are those where the transform length is a power 

of a basis r, i.e., N = r^S. These algorithms are referred to as radix-r algorithms. The most 

commonly used are those of basis r = 2 (radix2) and r = 4 (radix-4). Those algorithms and 

others such as radix-2^i and Split-Radix have been developed based on the basic Cooley-Tukey 

algorithm to further reduce the computational complexity.  

            For r = 2 and S stages, for instance, the following index mapping of Cooley-Tukey 

algorithm gives: 

 

            The Cooley-Tukey algorithm is based on a divide and conquer approach in the 

frequency domain and is therefore referred to as Decimation-In-Frequency (DIF) FFT. The 

DFT formula is split into two summations. 
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            The computational procedure can be repeated through decimation of the N/2-point 

DFTs X (2k) and DFTs X(2k+1). The entire algorithm involves log2N stages. Where each 

stage involves N/2 operations units (Butterflies). The computation of the N point DFT via the 

decimation-in-frequency FFT as in the decimation-in-time algorithm requires (N/2)·log2N 

complex multiplications and N.log2N complex addition.  

 

2.3 Implementation of FFT: 

            In general, the other fast algorithms like radix-4, radix-8, radix-2 2 and split-radix 

(based on the same approach) recursively divide the FFT computation into odd- and even-half 

parts and then obtain as many common twiddle factors as possible. The number of needed real 

additions and multiplications is generally used to compare efficiency of different FFT 

algorithms. 

  

                          

                   Fig 2.1 : Basic butterfly computation in the DIT FFT algorithm 
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            Since the FFT is a divide and conquer algorithm, the various steps can be implemented 

in multiple passes in a shader by rendering the result of each pass to a texture. These steps are 

called butterflies, because of the shape of the data-flow diagram. The FFT algorithm 

recursively breaks down a DFT of composite size N = n1n2 into n1 smaller transforms of size 

n2. These smaller DFTs are then combined with size-n1 butterflies, which themselves are 

DFTs of size n1 (performed n2 times on corresponding outputs of the sub-transforms) pre-

multiplied by roots of unity (known as twiddle factors). 

            The application employs four 2D textures - two for the ping-pong operations, one for 

the source data (for each pass) and the one for holding the indices and weights for performing 

the butterfly steps. The textures used for ping-ponging are marked as either a RenderTarget 

texture or a source depending on whether it is used as destination or source in the current 

pass.This enables the shader to use the output of the previous pass as input in the current pass. 

Following are the steps in implementing the FFT algorithm: 

• compute indices and weights for performing the butterfly operations 

• compute log2(Width) horizontal butterflies 

• compute log2(Height) vertical butterflies

 

                           

                          Fig 2.2 : Block diagram of FFT 
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            If the height and width of the image are equal, then only one texture can be used for 

the butterfly values, for both the horizontal and vertical passes. Also note that in the vertical 

butterfly pass the input is the result of the horizontal butterfly pass. In each butterfly pass the 

current pixel is combined with another pixel using a complex multiply and add and written to 

the current location. In other words if the current pixel is a then, 

                                                              a = a + wb 

            Where w is a complex number representing the weight and b is some other pixel. Each 

pixel of the butterfly texture contains the locations of a, b and the value of w and passed to the 

shader by the application. Note that for simplicity, only gray scale images are considered in 

the current implementation. However, extending the algorithm to multiple color channels is 

straight forward and will only require more textures for additional channels. 

            The shader looks-up the butterfly texture for indices of the two pixels to be combined 

and the weight and computes the result by performing the complex math a + wb or a - wb. To 

make matters simple, the sign is encoded as part of the weight and hence only the addition is 

performed in the shader program all the times. The result is returned with the real value in the 

first three components and the imaginary value in the fourth component. 

            To transform the image from frequency domain to the spatial domain the exact same 

operations are performed but on the frequencies. Since the frequencies are not in the range to 

be displayed on the screen they are scaled by a factor of 1/(Width*Height). 

 

2.4 32-point FFT: 

            The synthesis of 32-points FFT is divided into eight stages, first stage is used to supply 

inputs where second stage consists of a finite state machine (FSM), and next five stages are 

used for calculation of radix-2 DIT FFT through butterfly operations and last stage is used to 

store the outputs of 32-point FFT i.e., 32-point sequences which are now converted into 

frequency domain. 
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    Fig 2.3: The five stages of the 32-point DIF FFT architecture 

 

2.5 Block diagram of 32 point FFT: 

 

      Fig 2.4 : Block diagram of 32 point FFT 
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            FFT is an efficient implementation of DFT, and is used, apart from other fields, in 

digital image processing. Fast Fourier Transform is applied to convert an image from the 

spatial domain to the frequency domain. Applying filters to images in frequency domain is 

computationally faster than to do the same in the image domain. FFT turns the complicated 

convolution operations into simple multiplications. 

 

2.6 Mathematical calculations of 32 point FFT: 

Number  of stages:    

M = log2(N) = log2(32) = (log10(1/32))/(log10(2)) = 5   

Number of butterflies per stage:   

N/2  = 32/2 = 16 

Number of input/output for each butterfly in stage “m” is seperated by: 

           2m-1  samples. 

           stage 1 : 1 sample 

             stage 2 : 2 samples 

 

           stage 3 : 4 samples 

           stage 4 : 8 samples 

            stage 5 : 16 samples 

Number of complex multiplications is given by: 

     (N/2)log2(N) = 16*5 = 80 

Number of complex addition is given by: 

     Nlog2(N)  = 32*5 = 160 

Number of butterflies in each stage: 

2M-m   

           stage 1 : 25-1 = 16 

           stage 2 : 25-2 = 8 

           stage 3 : 25-3 = 4 
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           stage 4 : 25-4 = 2 

          stage 5 : 25-5 = 1  

 

 

 

        Fig 2.5: Signal flow graph of a 32-point DIT-FFT with Radix-2
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2.7 Advantages of FFT over DFT: 

            FFT helps in converting the time domain in frequency domain which makes the 

calculations easier as we always deal with various frequency bands in communication system 

another very big advantage is that it can convert the discrete data into a continuous data type 

available at various frequencies. 

            FFT is based on divide and conquer algorithm where you divide the signal into two 

smaller signals, compute the DFT of the two smaller signals and join them to get the DFT of 

the larger signal. The order of complexity of DFT is O(n^2) while that of FFT is O(n. logn) 

hence, FFT is faster than DFT. 

 

2.8 Disadvantages of FFT: 

            A disadvantage associated with the FFT is the restricted range of waveform data that 

can be transformed and the need to apply a window weighting function to the waveform to 

compensate for spectral leakage.  

In the case of FFT, if the real frequency doesn't match FFT frequency grid exactly, power 

spectrum is spreading mostly among neighboring frequency bins (among all bins in general, 

but most of it is focused in a few adjacent ones).  

 

2.9 Applications of FFT: 

• fast large-integer and polynomial multiplication, 

• efficient matrix–vector multiplication for Toeplitz, circulant and other structured 

matrices, 

• filtering algorithms  

• fast algorithms for discrete cosine or sine transforms (e.g. fast DCT used 

for JPEG and MPEG/MP3 encoding and decoding), 

• fast Chebyshev approximation, 

• solving difference equations, 

• computation of isotopic distributions.  

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://en.wikipedia.org/wiki/Circulant_matrix
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_sine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/MPEG
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Chebyshev_approximation
https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Mass_spectrometry
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• modulation and demodulation of complex data symbols using orthogonal frequency 

division multiplexing (OFDM) for 5G, LTE, Wi-Fi, DSL, and other modern 

communication systems. 

 

2.10 Reliability:          

  Fast Fourier transform (FFT)-based computations can be far more accurate than the 

slow transforms suggest. Discrete Fourier transforms computed through the FFT are far more 

accurate than slow transforms, and convolutions computed via FFT are far more accurate than the 

direct results. However, these results depend critically on the accuracy of the FFT software 

employed, which should generally be considered suspect. Popular recursions for fast computation 

of the sine/cosine table (or twiddle factors) are inaccurate due to inherent instability. Some 

analyses of these recursions that have appeared heretofore in print, suggesting stability, are 

incorrect. Even in higher dimensions, the FFT is remarkably stable. 

The FFT is just a fast algorithm for implementing the discrete Fourier transform (DFT), nothing 

more. Instead, there is an inherent tradeoff in time and frequency resolution due to the Heisenberg 

uncertainty principle. While its statement is explicitly focused at quantum mechanics, the same 

underlying principle remains true: the more precisely you know the frequency of a signal, the less 

able you are to localize it in time. 

With that said, there are another class of techniques known as bilinear time-frequency 

distributions that are appropriate for some applications. One example is the Wigner-Ville 

distribution. In short, these techniques can provide simultaneously high resolution in time and 

frequency. The cost, however, is the presence of spurious features in their resulting outputs. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Uncertainty_principle
http://en.wikipedia.org/wiki/Uncertainty_principle
http://en.wikipedia.org/wiki/Bilinear_time%E2%80%93frequency_distribution
http://en.wikipedia.org/wiki/Bilinear_time%E2%80%93frequency_distribution
http://en.wikipedia.org/wiki/Bilinear_time%E2%80%93frequency_distribution#Wigner-Ville_Distribution
http://en.wikipedia.org/wiki/Bilinear_time%E2%80%93frequency_distribution#Wigner-Ville_Distribution
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        CHAPTER – 3 

      RADIX 2 BUTTERFLY DIAGRAM 

 

3.1 Butterfly Diagram: 

            In the context of fast Fourier transform algorithms, a butterfly is a portion of the 

computation that combines the results of smaller discrete Fourier transforms (DFTs) into a 

larger DFT, or vice versa (breaking a larger DFT up into sub transforms). The name "butterfly" 

comes from the shape of the data-flow diagram in the radix-2 case, as described below. The 

earliest occurrence in print of the term is thought to be in a 1969 MIT technical report. The 

same structure can also be found in the Viterbi algorithm, used for finding the most likely 

sequence of hidden states. 

            Most commonly, the term "butterfly" appears in the context of the Cooley–Tukey FFT 

algorithm, which recursively breaks down a DFT of composite size n = rm into r smaller 

transforms of size m where r is the "radix" of the transform. These smaller DFTs are then 

combined via size-r butterflies, which themselves are DFTs of size r (performed m times on 

corresponding outputs of the sub-transforms) pre-multiplied by roots of unity (known 

as twiddle factors). This is the "decimation in time" case; one can also perform the steps in 

reverse, known as "decimation in frequency", where the butterflies come first and are post-

multiplied by twiddle factors. 

                                          

      Fig 3.1 : Butterfly diagram 

 

            The above diagram is about signal flow graph connecting the inputs x (left) to the 

outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Turkey FFT. 

This diagram resembles a butterfly, hence it is also called as hourglass diagram. 

 

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Root_of_unity
https://en.wikipedia.org/wiki/Twiddle_factor
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3.2 Radix 2 Butterfly: 

            In the case of the radix-2 Cooley–Tukey algorithm, the butterfly is simply a DFT of 

size-2 that takes two inputs (x0, x1) (corresponding outputs of the two sub-transforms) and gives 

two outputs (y0, y1) by the formula (not including twiddle factors): 

                          

If one draws the data-flow diagram for this pair of operations, the (x0, x1) to (y0, y1) lines cross 

and resemble the wings of a butterfly.   

 

 

                                       Fig 3.2 : DIT Radix 2 FFT 

            The above diagram is about decimation-in-time radix-2 FFT breaks a length-N DFT 

into two length-N/2 DFTs followed by a combining stage consisting of many butterfly 

operations. More specifically, a radix-2 decimation-in-time FFT algorithm on n = 2 p inputs 

with respect to a primitive n-th root of unity relies on O (n log2 n) butterflies of the form: 

     

where k is an integer depending on the part of the transform being computed. Whereas the 

corresponding inverse transform can mathematically be performed by 
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replacing ω with ω−1 (and possibly multiplying by an overall scale factor, depending on the 

normalization convention), one may also directly invert the butterflies: 

     

corresponding to a decimation-in-frequency FFT algorithm. 

 

3.3 Radix 2: 

            The Radix indicates the size of FFT decomposition. In this paper Radix is 2 which is 

single-Radix FFT. For single Radix FFTs, transform size must be choose according to the 

power of Radix. Here we use 32and 64 sizes, which is 25 and 26. The Radix-2 Decimation-in-

Time FFT (DIT-FFT) is applied to the two Points N/2 DFT’s. To find the number of butterfly 

stages required to compute N length sequence can be M=log2N, and N/2 butterfly operations 

are computed in each stage. In this paper, there are 5 butterfly stages and 16 butterfly operations 

are computed to produce 32 Point FFT. Similarly, 6 butterfly stages and 32 butterfly operations 

are computed to produce 64 Point FFT. Fig 4 and Fig 5 shows the butterfly stages whereas, 

Fig 4 and Fig 5 shows the butterfly diagram of each and every stage. In DIT-FFT the given 

input sequence is in shuffled order and the output sequence is in natural order. By using Bit-

Reversal input sequence gets shuffled. 

                               

           Fig 3.3 : 32 point FFT 
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3.4 Other uses of butterfly diagram: 

            The butterfly can also be used to improve the randomness of large arrays of partially 

random numbers, by bringing every 32 or 64 bit word into causal contact with every other 

word through a desired hashing algorithm, so that a change in any one bit has the possibility 

of changing all the bits in the large array. 
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CHAPTER - 4 

INTRODUCTION TO VERILOG 

 

4.1 Introduction: 

            Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to 

model electronic systems. It is most commonly used in design and verification of digital 

circuits at the regular -transfer level of abstraction. It is also used in verification of analog 

circuits and mixed signal circuits HDLs allows the design to be simulated earlier in the design 

circuits in order to correct errors or experiments with different architectures. 

            Designs described in HDL are technology independent, easy to design and debug, and 

are usually more readable than schematics, particularly for large circuits. Verilog can be used 

to describe designs at four levels if abstractions: 

• Algorithmic level (much like as code if, case and loop statements). 

• Register transfer level (RTL uses registers connected by Boolean equations) 

• Gate level (interconnected AND, NOR etc.). 

• Switch level (the switches are MOS transistors inside gates). 

            A Verilog design consists of a hierarchy of modules. Modules encapsulate design 

hierarchy, and communicate with other modules through a set of declared input, output and 

bidirectional ports. Internally, a module can contain any combination of the following: 

net/variable declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks, 

and instances of other modules (sub-hierarchies). 

 

4.2 Features of Verilog HDL: 

Verilog HDL offers many useful features for hardware design. 

• Verilog (verify logic) HDL is general purpose hardware description language that is easy to 

learn and easy to use. It is similar in syntax to C programming language. 

• Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus a   

designer can define a hardware model in terms of switches, or behavior code. 

• Most popular logic synthesis tools support Verilog HDL. This makes it the language of choice 

for designers. 

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis simulation
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• Thus designing a chip in Verilog HDL allows the widest choice of vendors. 

• The Programming language interface (PLI) is a powerful feature that allows the user to custom 

C code to interact with the internal data structures of Verilog. 

 

4.3 Module Declaration: 

            A module is the principal design entity in Verilog. The first line of a module declaration 

specifies the name and port list (arguments). The next few lines specifies the I/O type (input, 

output or inout) and width of each port. The default port with is 1 bit. Then the port variables 

must be declared wire, reg. The default is wire. 

            Typically inputs are wire since their data is latched outside the module. Outputs are 

type reg if their signals were stored inside always or initial block 

Syntax 

module model_ name(port_list); 

input[msb:lsb] input_port_list; 

output[msb:lsb] output_port_list; 

inout[msb:lsb] inout_port_list; 

…….statements………… 

endmodule 

Verilog has four levels of modelling: 

1. The switch level Modeling. 

2. Gate- level Modeling. 

3. The Data-Flow level. 

4. The behavioural or procedural level. 

 

1.Switch level Modeling 

A circuit is defined by explicity showing how to constrct it using transistors like pmos and 

nmos, predefined modules. 
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Example 

module inverter (out,in); 

output out; 

input in; 

Supply0gnd; 

Supply1vdd; 

nmosx1(out, in, gnd); 

pmosx2(out, in, vdd); 

endmodule 

 

2.Gate level modeling 

            A circuit is defined by explicitly showing how to correct it using logic gates. Predefined 

modules, and the connections between them.In this first we think of our circuit as a box or 

module which is encapsulated from its outer environment, in such a way that its only 

communication with the outer environment, is through input and output ports. We then set out 

to describe structure within the module by explicitly describing its gates and sub modules, and 

how they connect with one another as well as to the module ports. 

In other words, structural modelling is used to draw aschematic diagram for the circuit. 

As an example, consider the full-adder below. 

 

Example 

module fulladder (a, b, sum, Cout); 

input a, b; 

output sum, Cout; 

xor x1(a, b, y); 

xor x2(a, b, y); 

endmodule 

 

3.Data-flow modelling 

Dataflow modeling uses Boolean expressions and operators. In this we use assign statement. 

 

Example 

module fulladder (a, b, sum, Cout); 
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input a, b; 

output sum, Cout; 

assign sum=a^b; 

assign Cout=a^b; 

endmodule 

 

4.Behavioural modeling 

            It is higher level of modeling where behaviour of logic is modelled. Verilog 

behavioural Code is inside procedure blocks, but there is an exception:some behavioural code 

also exist outside procedure blocks. 

There are two types of procedural blocks in Verilog 

Initial: initial blocks execute only once at time zero (start execution at time zero) 

Always: always blocks loop to execute over and over again; in other words, as other words as 

the name suggests, it executes always. 

An always statement executes repeatedly, it starts and its execution at other 0 ns  

 

Syntax:  

always@ (sensitivity list) 

Begin 

Procedural statements 

end 

 

Example 

 module fulladder (a, b, clk, sum); 

 input a, b, clk; 

       output sum; 

 always@ (posedgeclk) 

       begin 

       sum= a+b; 

         endmodule 
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CHAPTER-5 

INTRODUCTION TO SOFTWARE TOOLS 

 

5.1 SOFTWARE TOOLS USED 

5.1.1 MATLAB 

 

 

   

 

 

 

 

 

 

 

Introduction: 

          MATLAB (Matrix Laboratory) is a programming platform developed by MathWorks, 

which uses it's proprietary MATLAB programming language. The MATLAB programming 

language is a matrix-based language which allows matrix manipulations, plotting of functions 

and data, implementation of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, C#, Java, Fortran and Python. It is used 

in a wide range of application domains from Embedded Systems to AI, mainly to analyze data, 

develop algorithms, and create models and applications. 

 

Usage of MATLAB software in this project: 

            DFT plays important role in DSP and used in wide variety of applications like 

correlation and spectral analysis. Understanding quantization errors in its computation is an 

important aspect of its design either for s/w or h/w implementation. 

A complex DFT of N points has N complex (4N real) mutliplications. In the fixed point 

implementation of the DFT each mutliplication introduces a quantization error (all the errors 

are mutually uncorrelated and uncorrelated with input sequence as well). 
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            FFT provides an efficient way to compute DFT. Even though FFT has significantly less 

number of multiplications the quantization errors do not decreate accordingly. Each butterfly 

operation (ignoring some multiplications are trivial +/-1) involves one complex (four real) 

multiplication(s). The quantization errors introduced in each butterfly propagate through N/2 

stages. 

            Analysis of quantization related noise effects in a FFT is a challenge. Since FFT 

algorithm consists of sequence of stages, it is possible to have different scaling strategies in 

each stage. The attached model shows how fixed point numeric type and fimath can be changed 

at each stage of the FFT (implemented as a sub function in the embedded MATLAB script). 

            To achieve desired numerical behavior of the algorithm for the specific application 

requirements, each multiplication and sum in the attached model can be tweaked 

independently. The complex magnitude result of FFT output is plotted and compared to its 

corresponding behavioral block. 

 

 

 

    Fig 5.1 : 32 point FFT in MATLAB 
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5.1.2 MODELSIM 

            MODELSIM is a multi-language HDL simulation environment by Mentor Graphics, 

for simulation of hardware description languages such as VHDL, Verilog and SystemC, and 

includes a built-in C debugger.ModelSim can be used independently, or in conjunction with 

Intel Quartus Prime, Xilinx ISE or Xilinx Vivado. Simulation is performed using the graphical 

user interface (GUI), or automatically using scripts. 

 

Language support 

            ModelSim uses a unified kernel for simulation of all supported languages, and the 

method of debugging embedded C code is the same as VHDL or Verilog. ModelSim and 

QuestaSim products enable simulation, verification and debugging for the following 

languages: 

 

VHDL 

Verilog 

Verilog 2020 

SystemVerilog  

PSL 

 

Usage of ModelSim in this project: 

We used ModelSim to implement the logic in verilog it is used to check the simulation results 

and graphs minimize the errors in the verilog code. 

 

Verilog: 

            Verilog is a Hardware Description Language (HDL). It is a language used for 

describing a digital system such as a network switch, a microprocessor, a memory, or a flip-

flop. We can describe any digital hardware by using HDL at any level. Designs described in 

HDL are independent of technology, very easy for designing and debugging, and are normally 

more useful than schematics, particularly for large circuits. 

            Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL), which is used to 

describe a digital system such as a network switch or a microprocessor or a memory a flip-

flop. Verilog was developed to simplify the process and make the HDL more robust and 
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flexible. Today, Verilog is the most popular HDL used and practiced throughout the 

semiconductor industry. 

            HDL was developed to enhance the design process by allowing engineers to describe 

the desired hardware's functionality and let automation tools convert that behavior into 

actual hardware elements like combinational gates and sequential logic. 

            Verilog is like any other hardware description language. It permits the designers to 

design the designs in either Bottom-up or Top-down methodology. 

 

• Bottom-Up Design: The traditional method of electronic design is bottom-up. Each design is 

performed at the gate-level using the standards gates. This design gives a way to design new 

structural, hierarchical design methods. 

• Top-Down Design: It allows early testing, easy change of different technologies, and 

structured system design and offers many other benefits. 

 

Verilog creates a level of abstraction that helps hide away the details of its implementation and 

technology. 

For example, a D flip-flop design would require the knowledge of how the transistors need to 

be arranged to achieve a positive-edge triggered FF and what the rise, fall, and CLK-Q times 

required to latch the value onto a flop among much other technology-oriented details. 

 

5.1.3  XILINX VIVADO 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.javatpoint.com/hardware
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Vivado enables developers to synthesize their designs, perform timing analysis examine RTL 

diagrams, simulate a design's reaction to different stimuli, and configure the target device with 

the programmer. Vivado is a design environment for FPGA products from Xilinx, and is 

tightly-coupled to the architecture of such chips, and cannot be used with FPGA products from 

other vendors. 

 

Language support 

            The Vivado High-Level Synthesis compiler enables C, C++ and SystemC programs to 

be directly targeted into Xilinx devices without the need to manually create RTL. Vivado HLS 

is widely reviewed to increase developer productivity, and is confirmed to support C++ classes, 

templates, functions and operator overloading. 

Xilinx vivado enables simulation, verification and synthesis for the following languages 

 

      VHDL Verilog 

      System Verilog 

 

5.2 XILINX VIVADO DESIGN SUITE  (2020.2 version) 

            Xilinx is a powerful software tool that is used to design, synthesize, simulate, test and 

verify digital circuit designs. The designer can describe the digital design by either using the 

schematic entry tool or a hardware description language. In this software we will create Verilog 

design input files – the hardware description of the logic circuit, compile Verilog source files, 

create a test bench and simulate the design to make sure of the correct operation of the design 

(functional simulation). The purpose of this is to give new users an exposure to the basic and 

necessary steps to implement and examine your own designs using Vivado environment. In 

this, we will design one simple module (OR gate); however, in the future, you will be designing 

such modules and completing the overall circuit design from these existing files. A Verilog 

input file in the Xilinx environment consists of: Entity Declarations: module name and 

interface specifications (I/O) – list of input and output ports; their mode, which is direction of 

data flow; and data type. Architecture: defines a component’s logic operation. 

            There are different styles for the architecture body: (i)Behavioural – set of sequential 

assignment statements (ii) Data Flow – set of concurrent assignments o Structural – set of 

interconnected components A combination of these could be used, but in this tutorial we will 

use Dataflow. In its simplest form, the architectural body will take the following format, 
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regardless of the style: architecture architecture_name of entity_name is begin … -- statement 

end architecture_name; 

            ISE (Integrated Software Environment) is a software tool produced by Xilinx for 

synthesis and analysis of HDL designs, enabling the developer to synthesize (“compile”) their 

designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction to 

different simuli, and configure the target device with the programmer. 

            Xilinx is an American technology company, primarily a supplier of programmable 

logic devices. It is known for inventing FPGA. The Xilinx Vivado is primarily used for circuit 

synthesis and design, while the Modelsim logic simulator is used for system-level testing. 

 

5.3 Project Navigator: 

            In this section, we introduce the reader to the main components of an “Project 

Navigator” window, which allows us to manage our design files and move our design process 

from creation to synthesis and to simulation phase. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Fig 5.2 : Xilinx Vivado Project navigator window 
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By opening the Xilinx Vivado Design suite, we will come to see the 3 main points. They are 

 1.Quick start 

 2.Tasks 

 3.Information Center 

In the Quick start block, We have create a new project, open project and open example project. 

In the Tasks, We have Manage IP, open hardware manager, xilinx Td store. 

In the Information center, we have documentation and tutorials,quick take videos and release 

notes guide. 

This section describes the four basic steps to working with a project. 

Step 1––– Creating a New Project 

This creates .xpr file and a working library. 

 

Step 2––– Adding Items to the project 

Projects can reference or include source files, folders for organizations, simulations, and any 

other files you want to associate with the project. You can copy files into the project directory 

or simply create mappings to files in other locations. 

 

Step 3––– Compiling the Files 

This checks syntax and semantics and creates the pseudo machine code that Viavdo uses for 

simulation. 

 

Step 4––– Simulating a Design 

This specifies the design unit you want to simulate and opens a structure tab in the workspace 

pane. 

You specify will be used to create a working library subdirectory within the Project 

In order to start Vivado double click the desktop icon: Or click: 

 

Creating a New Project 

After launching Vivado, from the startup page click the “Create New Project” icon. 

Alternatively, you can select File -> New Project 
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              Fig 5.3 : Creating new project window 

 

The New Project wizard will launch, click the “Next >” button to proceed 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Fig 5.4 : Guiding wizard for the project 

 

            Enter a project name and select a project location. Make certain there are NO 

SPACES in either! It’s not a bad idea to only use letters, numbers, and underscores as well. 

If necessary simply create a new directory for your Xilinx Vivado projects in your root drive 

(e.g.C:\Vivado). You will likely always want to select the “Create project sub-directory” 

check-box as well. This keeps things neatly organized with a directory for each project and  
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helps avoid problems. Click the “Next >” button to proceed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    Fig 5.5 : Creating a project name 

 

 

            Select the “RTL Project” radial and select the “Do not specify sources at this time” 

check-box. If you don’t select the check-box the wizard will take you through some additional 

steps to optionally add pre existing items such as VHDL or Verilog source files, Vivado IP 

blocks, and .XDC constraint files for device pin and timing configuration. For this first project 

you will add the necessary items later. Click the “Next >” button to proceed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        Fig 5.6 : Specifying the RTL project 

            You need to filter down to and select the specific part number for your project. You 

can physically read the markings on your chip or refer to your board’s documentation to find 
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its part number. In the case of the Basys 3 it’s the Artix-7 chip that’s on the board, and the 

filters shown will help you get to the correct device that’s highlighted. Once you select the 

correct device click the “Next >” button to proceed. 

 

 

 

 

 

 

 

 

 

 

                                                        Fig 5.7 : Choosing a board for project 

Click the “Finish” button and Vivado will proceed to create your project as specified. 

 

 

 

 

 

 

 

 

 

 

            

        Fig 5.8 : Project summary 
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5.4 Steps for design entry: 

Working through the Basic Project Flow: 

            The Vivado project window contains a lot of information, and the information 

displayed can change depending on what part of the design you currently have open as you 

work through the steps of your project. Keep this in mind as you work through this guide, 

because if you don’t see a specific sub-window or sub-window tab it’s possible you aren’t in 

the correct part of the design. 

            The “Flow Navigator” on the left side of the screen has all the major project phases 

organized from top to bottom in their natural chronological order. You begin in the “Project 

Manager” portion of the flow and the header at the top of the screen next to the Flow Navigator 

reflects this. This header and the corresponding highlighted section in the Flow Navigator will 

tell you which phase of the design you have open. 

 

 

 

 

 

 

 

 

       Fig 5.9 : Main window for the project 

 

Project Manager: 

1.Project Settings: 

Begin by clicking on “Project Settings” under the Project Manager phase of the Flow 

Navigator 
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                  Fig 5.10 : Project settings window 

 

There are a lot of settings available here for all phases of the project flow, but for now just 

select “System verilog” from the drop-down for the “Target language” in the “General” project 

settings and click the “OK” button. 

 

2.Add Sources: 

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator 

 

 

 

 

 

 

 

 

 

             Fig 5.11 : Adding the source files 
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Select the “Add or create design sources” radial and then click the “Next >” button. 

 

 

 

 

 

 

 

 

 

 

 

                  Fig 5.12 : wizard that shows to the design source 

 

Click the “Create File” button or click the green “+” symbol in the upper left corner and select 

the “Create File…” option. 

 

 

 

 

 

 

 

 

 

 

 

                                   Fig 5.13 : Creating a new file name for new design source 
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Make sure the options shown are selected in the “Create Source File” popup, and for the sake 

of following along enter “convolution(Gaussian filter)” for the “File name”. Click the “OK” 

button when finished. 

You can normally enter anything you like for the “File name” as long as it’s valid, but always 

make certain there are NO SPACES! 

 

 

 

 

 

 

 

 

 

 

                                                         Fig 5.14 : Selecting the type of file and location 

 

Click the “Finish” button and Vivado will then bring up the “Define Module” window. 

 

3.Define Module: 

            You can use the “Define Module” window to automatically write some of the VHDL 

code for you. Additional “I/O Port Definitions” can be added by either clicking the green “+” 

symbol in the upper left or by simply clicking on the next empty line. The “Entity name” and 

“Architecture name” will be the corresponding Verilog HDL identifiers used in the code, as 

will whatever is typed in for each “Port Name”. Any valid verilog HDL identifier can be used 

for any of these, but for the sake of following along enter the information as shown. Make sure 

the proper “Direction” is set for each. Click the “OK” button when finished. 

            Note that if you would rather write your own code from scratch you can simply click 

the “Cancel” button and Vivado will create a completely blank System verilog VHDL source 
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file inside your project. If you click the “OK” button without defining any “I/O Port 

Definitions” Vivado will still write the basic Verilog HDL code structure but the port definition 

will be empty and commented out for you to uncomment and fill later. 

            Also note that the port names here match the silkscreen reference designators of the 

switches and LEDs on the Basys 3 board that will be utilized for the example. This is for the 

convenience of those following along with the Basys 3, but should not be inferred as a 

requirement by beginners; each name is simply an arbitrary identifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig 5.15 : Module defining with ports 

 

            The System Verilog HDL source file generated will be added to your project in the 

“Design Sources” folder as shown. Double click it and it will open up in a new tab for you to 

view/edit. All the code here was generated by the previous “Define Module” window, and for 

this example you only need to manually enter the three highlighted lines between the “begin” 

and “end” keywords. If we want to create a simulation source we have to select a new 

simulation source by right clicking the add source block in the panel.
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       Fig 5.16 : Creating the simulation sources
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CHAPTER 6 

SIMULATION RESULTS AND RESULTS 

Simulation of the FFT and results obtained from its detailed synthesis report shows that the 

proposed design of 32-point DIT FFT with radix-2 is very efficient in terms of area as well as 

it is also efficient in terms of speed. 

 

 

   Fig 6.1 : Internal Architecture of The Butterfly Component 

 

            The simulation of this project is done with the help of Xilinx Vivado 14.7 in which 32-

point input sequence is provided with the help of an input block and twiddle factors are also 

provided by calculating and converting them into their 16-bit binary equivalents. The following 

figures shows the waveforms obtained after simulation. 
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6.1 Simulation results of 32 point FFT: 
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6.2 Synthesis Report  

 

                                    Device Utilization Summary (estimated values) 

         

Logic  

Utilization 

 

     

         Used 

 

       

Available 

 

        

Utilization 

 

 

Number of slice 

LUT’s 

 

 

      926852  

 

 

         

1303680 

      

           71% 

  

  Resources 

left 

 

Number of 

fully used 

LUT-FF pair’s 

 

          

             0 

          

         

2607360 

      

             0% 

 

       Not used 

 

Number of 

bonded IOBs 

 

   

         1638 

      

            2016 

      

           81% 

 

  Resource 

left 

 

Number of DSP 

   

         7016 

     

            9024 

       

            77% 

 

   

 

        Table 6.1 : Summary of Virtex Ultrascale + HBM  features used in the 32 point FFT 
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   Fig 6.2 : RTL analysis of 32 point FFT 
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6.3 MATLAB Results: 

 

                                  Fig 6.3 : Magnitude of 32 point FFT 

 

             

                                                  Fig 6.4 : Phase of 32 point FFT 
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    Fig  6.5 : Signal view in matlab 
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             Table 6.2: Simulation Results of 32 point FFT in matlab 
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                  CONCLUSION   

FFT has the benefit over DFT because it has less computations. Implemented 

butterflies algorithm on VIVADO reduces calculations and makes system more 

efficient and fast. The FFT algorithm is used information extracting for ECG, 

EEG signals. FFT helps in converting the time domain in frequency domain which 

makes the calculations easier as we always deal with various frequency bands in 

communication systems. This proposed design is helpful in solving complex 

computations faster and there is a large scope in increasing the processing points speed 

for bigger signal processing systems.  It is also powerful tool for new technology IoMT.  

 

     FUTURE WORK 

The programming code which we implemented can made more robust and can be 

optimized to more number of inputs with better precision. By this, the quality of tracing 

back a signal can be improved and it becomes more flexible and easier instead using 

heavier operations. There are also some advanced FFT algorithms i.e., Good-Thomas 

algorithm, Rader algorithm…etc. helps in improving conversion rate. 
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