
i

COLOR IDENTIFICATION
A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

B.Bavitha (317126512007) R.Navya (317126512048)

M.Haritha(318126512L07) K.H.Grace(317126512025)

Under the guidance of

Dr.P.Murugapandiyan

Assosciate Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P)

2020-2021

ii

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC

with ‘A’ Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam dist.(A.P)

 CERTIFICATE

This is to certify that the project report entitled “COLOR IDENTIFICATION”

submitted by B.Bavitha (317126512007), R.Navya (317126512048), M.Haritha

(318126512L07), K.H.Grace (317126512025) in partial fulfillment of the requirements

for the award of the degree of Bachelor of Technology in Electronics &

Communication Engineering of Andhra University, Visakhapatnam is a record of

bonafide work carried out under my guidance and supervision.

Project Guide Head of the Department

Dr.P.Murugapandiyan Dr. V.Rajyalakshmi

(Assosciate Professor) Professor&HOD

Department of E.C.E Department of E.C.E

ANITS ANITS

iii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr.P.Murugapandiyan

Designation, Department of Electronics and Communication Engineering, ANITS, for

his/her guidance with unsurpassed knowledge and immense encouragement. We are

grateful to Dr. V. Rajyalakshmi, Head of the Department, Electronics and

Communication Engineering, for providing us with the required facilities for the

completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all

non-teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting

us directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

B.Bavitha(317126512007),

R.Navya(317126512048),

M.Haritha(318126512L07),

K.H.Grace (317126512025)

iv

ABSTRACT

The foremost stage in many of the image processing applications is Color detection. It is

significantly used in applications such as self-driving cars, object detection, traffic signal

detection, skin tone detection and object tracing. While tracing an object in motion, color is

constant than any other attributes. This paper gives an approach to detect the label of the color by

placing the cursor and double clicking at that position of the image and tracks the red, green and

blue color objects using bounding box property. By examining the RGB values of every pixel in

the image, the color of the pixels is recognized. All the objects of interest in the video are

detected and tracked by a rectangular bounding box using HSV color model. The results of this

implementation can be used in self driving cars to detect traffic signal, in some industrial robots

to perform pick-and-place task in separating colored objects and as a tool in various drawing and

image editing applications.

In this project, We build an application through which we can automatically get the name of the

color by double clicking on it. We have a data file that contains the color name and its values.

Then we calculate the distance from each color and find the shortest one. We extract the color

RGB values and the color name of a pixel. This also tracks three different colors Red, Blue and

Green from a video. If there's any color from Red, Blue and Yellow or all the three at the same

time in the live stream, rectangular boxes of Red color for tracking of Red, blue rectangular box

for Blue color and Green for Green color will bound the respective color objects and the name of

the color is displayed on top of it. This helps in recognizing colors and in robotics. This type of

system is used in driverless cars to detect traffic and vehicle back light and take decision to stop,

start or continue driving. This also has many applications in industry to pick and place different

colored objects by the robotic arm. This is done using OPENCV using python programming

language.

v

CONTENTS

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVATIONS x

CHAPTER 1 INTRODUCTION 1

 1.1 Project Objective 1

 1.2 Project Outline 1

CHAPTER 2 OPENCV 2

 2.1 History 2

 2.2 Computer Vision 4

 2.3 Applications 5

 2.4 Features of OpenCV Library 5

 2.5 OpenCV Library Modules 6

CHAPTER 3 RGB COLOR MODEL 7

 3.1 Introduction 7

 3.2 Additive Colors 8

 3.3 Physical Principles for the Choice of Red Green and Blue 10

 3.4 Numeric Representations 11

CHAPTER 4 HSV COLOR MODEL

 4.1 Introduction 15

 4.2 Hue Saturation Value 16

 4.3 HSV Representations 17

 4.4 Advantages of HSV 18

 4.5 Uses and Applications of HSV 18

CHAPTER 5 COLOR DETECTION USING RGB

 5.1 Introduction 19

 5.2 The Data Set 19

vi

 5.3 Algorithm 20

 5.4 Import the Required Packages and Load the Images 22

 5.4.1 OpenCV-Python 22

 5.4.2 NumPy 23

 5.4.3 Pandas 23

 5.5 Read the CSV File with Pandas 24

 5.5.1 Index 24

 5.5.2 A CSV 25

 5.6 Set a Mouse Callback Event on a Window 25

 5.7 Create the Draw_Function 26

 5.8 Calculate Distance to Get Color Name 27

 5.9 Display image on the window 28

CHAPTER 6 OBJECT DETECTION AND TRACKING USING HSV

 6.1 Introduction 30

 6.2 Input:Capture Video Through Webcam 31

 6.2.1 Reading A Video 31

 6.2.2 Displaying A Video 33

 6.3 Read The Video Stream in Image Frames 33

 6.4 Convert The Image Frame in BGR to HSV Color Space 34

 6.4.1 Working of HSV Range in OpenCV 35

 6.5. Masking 36

 6.6 Morphological Transform 37

 6.6.1 Erosion 37

 6.6.2 Dilation 37

 6.6.3 Opening 38

 6.6.4 Closing 38

 6.6.5 Morphological Gradient 38

 6.6.6 Top Hat 38

 6.6.7 Black Hat 39

vii

 6.6.8 Structuring Element 39

 6.7. Bitwise and Between the Image Frame And Mask

 is Performed to It And Others Are Discarded 39

 6.7.1.Bitwise AND Operator 39

 6.8. Create Contour to Track Each Color 40

 6.8.1 Contours 40

 6.8.2 To Draw the Contours 40

 6.8.3 Contour Approximation Method 41

 6.8.4 Bounding Boxes 41

 6.8.5 Using Bounding Boxes for Object Detection 42

 6.8.6 Common Use Cases for Bounding Boxes 43

 6.9. Output 43

CHAPTER 7 RESULTS AND DISCUSSIONS 44

CHAPTER 8 CONCLUSION 47

CHAPTER 9 REFERENCES 48

PAPER PUBLICATION DETAILS 49

viii

LIST OF FIGURES

Figure no Title Page no

Fig. 3.1 RGB color model 8

Fig. 3.2 Color wheel cycle 9

Fig. 3.3 RGB color gamut 10

Fig. 3.4 RGB color slider 12

Fig. 3.5 Hexadecimal 8-bit RGB representation of the main 125 colors 12

Fig. 4.1 HSV color model 16

Fig. 5.1 Architecture diagram for color detection 21

Fig. 6.1 Block diagram for object detection and tracking 31

Fig. 6.2 Video capture 32

Fig. 6.3 While loop example 34

Fig. 6.4 Contour approximate method 41

Fig. 7.1 Original input image of building 44

Fig. 7.2 Output image 45

Fig. 7.3 Output image 45

Fig. 7.4 Output of object detection and tracking 46

ix

 LIST OF TABLES

Table no Title Page no

Table 3.1 Notation and RGB triplet 13

x

LIST OF ABBREVATIONS

OpenCV Open source computer vision

RGB Red Green Blue

HSV Hue Saturation Value

CPU Central processing unit

IEEE

Institute of Electrical and Electronics

Engineering

AI Artificial Intelligence

1

1.INTRODUCTION

1.1 Project Objective:

For a robot to visualize the environment, along with the object detection, detection of its

color is also very crucial . Color detection is necessary to recognize objects, it is also used

as a tool in various image editing and drawing apps. Some real world applications are: it

is used in self driving cars to detect traffic signals and is also used in some industrial

robots, to perform pick-and-place task in separating different colored objects. This design

system can be implemented in various fields for various purposes such as Defence,

industrial purposes, games, automation, security, monitoring etc. Even these systems can

also play a vital role in field of radar and navigating such as detecting, tracking of a

moving colored object etc. Detection of color plays an important role even in the field of

medical, in detection of color of skin, identification of a face, recognizing license plate.

1.2 Project Outline:

Color is one of the salient features of a picture. The detection of color in a live stream or

in a graphic image can be employed in numerous scientific and industrial applications.

Color detection is the elemental step in many image processing applications. In today’s

graphical world, videos and images are omnipresent, it has been a complicated task to

perform computer vision using robust and economical computer devices. Open-source

computer vision library (OpenCV) paves a way to serve the rising demand of high-

quality video and image processing. An image is always represented in the form of a

matrix containing its pixel values. Images are often illustrated using several color models

like CMYK, gray-scale, RGB, HSV etc. In this system, RGB model is employed to label

the colors in a picture. Red, Green and Blue lights are mixed in numerous ways to

generate ample amounts of colors. In RGB model image is represented in a matrix of

PxQx3 pixels with P rows and Q columns of pixels in a picture. On which different

operations can be applied to label the color in an image and while tracing an object in

2

motion, color is constant than any other attributes. It does not get effected to shifting,

rotation and scaling operations. Here, the object is traced based on the HSV color

model’s color model is better version of RGB color model. Color detection can be

applied to various applications. Recently it has gained the attention of scientists who

work on skin tone detection which results in efficient human body detection and tracing.

This color information can also be applied in license plate detection which aids in

tracking the vehicle. Here, the name of the color is detected using RGB color model and

the corresponding Red, Green and Blue values are displayed, the object detection and

tracking is performed using HSV color model in OPENCV, python.

3

2.OPENCV

OpenCV (Open Source Computer Vision Library) is a library of programming

functions mainly aimed at real-time computer vision. Originally developed by Intel, it

was later supported by Willow Garage. It is a cross-platform library using which we can

develop real-time computer vision applications. It mainly focuses on image processing,

video capture and analysis including features like face detection and object detection.

2.1 History:

Officially launched in 1999 the OpenCV project was initially an Intel Research initiative

to advance CPU -intensive applications, part of a series of projects including real-time

ray tracing and 3D display walls. The main contributors to the project included a number

of optimization experts in Intel Russia, as well as Intel's Performance Library Team. In

the early days of OpenCV, the goals of the project were described as:

 Advance vision research by providing not only open but also optimized code for

basic vision infrastructure. No more reinventing the wheel.

 Disseminate vision knowledge by providing a common infrastructure that

developers could build on, so that code would be more readily readable and

transferable.

 Advance vision-based commercial applications by making portable, performance-

optimized code available for free – with a license that did not require code to be open

or free itself.

The first alpha version of OpenCV was released to the public at the IEEE Conference on

Computer Vision and Pattern Recognition in 2000, and five betas were released between

2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release"

was released in October 2008.

The second major release of the OpenCV was in October 2009. OpenCV 2 includes

major changes to the C++ interface, aiming at easier, more type-safe patterns, new

4

functions, and better implementations for existing ones in terms of performance

(especially on multi-core systems). Official releases now occur every six months and

development is now done by an independent Russian team supported by commercial

corporations.

In August 2012, support for OpenCV was taken over by a non-profit foundation

OpenCV.org, which maintains a developer and user site.

On May 2016, Intel signed an agreement to acquire Itseez, a leading developer of

OpenCV.

In July 2020, OpenCV announced and began a Kickstarter campaign for the OpenCV AI

Kit, a series of hardware modules and additions to OpenCV supporting Spatial AI.

2.2 Computer Vision:

Computer Vision can be defined as a discipline that explains how to reconstruct,

interrupt, and understand a 3D scene from its 2D images, in terms of the properties of the

structure present in the scene. It deals with modelling and replicating human vision using

computer software and hardware.

Computer Vision overlaps significantly with the following fields −

 Image Processing − It focuses on image manipulation.

 Pattern Recognition − It explains various techniques to classify patterns.

 Photogrammetry − It is concerned with obtaining accurate measurements from

images.

Image processing deals with image-to-image transformation. The input and output of

image processing are both images.

Computer vision is the construction of explicit, meaningful descriptions of physical

objects from their image. The output of computer vision is a description or an

interpretation of structures in 3D scene.

5

2.3 Applications:

 2D and 3D feature toolkits

 Egomotion estimation

 Facial recognition system

 Gesture recognition

 Human computer interaction (HCI)

 Mobile robotics

 Motion understanding

 Object detection

 Segmentation and recognition

 Stereopsis stereo vision: depth perception from 2 cameras

 Structure from motion (SFM)

 Motion tracking

2.4 Features of OpenCV Library:

Using OpenCV library, you can

 Read and write images

 Capture and save videos

 Process images (filter, transform)

 Perform feature detection

 Detect specific objects such as faces, eyes, cars, in the videos or images.

 Analyze the video, i.e., estimate the motion in it, subtract the background, and

track objects in it.

OpenCV was originally developed in C++. In addition to it, Python and Java bindings

were provided. OpenCV runs on various Operating Systems such as windows, Linux,

OSx, FreeBSD, Net BSD, Open BSD, etc.

6

2.5 OpenCV Library Modules:

Core Functionality:

This module covers the basic data structures such as Scalar, Point, Range, etc., that are

used to build OpenCV applications. In addition to these, it also includes the

multidimensional array Mat, which is used to store the images. In the Java library of

OpenCV, this module is included as a package with the name org.opencv.core.

Image Processing:

This module covers various image processing operations such as image filtering,

geometrical image transformations, color space conversion, histograms, etc. In the Java

library of OpenCV, this module is included as a package with the

name org.opencv.imgproc.

Video and Video I/O:

This module covers the video analysis concepts such as motion estimation, background

subtraction, and object tracking. In the Java library of OpenCV, this module is included

as a package with the name org.opencv.video. This module explains the video capturing

and video codecs using OpenCV library. In the Java library of OpenCV, this module is

included as a package with the name org.opencv.videoio.

Objdetect:

This module includes the detection of objects and instances of the predefined classes

such as faces, eyes, mugs, people, cars, etc. In the Java library of OpenCV, this module

is included as a package with the name org.opencv.objdetect.

7

3.RGB COLOR MODEL

3.1 Introduction:

The RGB color model is an additive color model in which red, green, and blue light are

added together in various ways to reproduce a broad array of colors. The name of the

model comes from the initials of the three additive primary colors, red, green, and blue.

The main purpose of the RGB color model is for the sensing, representation, and display

of images in electronic systems, such as televisions and computers, though it has also

been used in conventional photography. Before the electronic age, the RGB color model

already had a solid theory behind it, based in human perception of colors.

RGB is a device-dependent color model: different devices detect or reproduce a given

RGB value differently, since the color elements (such as phosphors or dyes) and their

response to the individual R, G, and B levels vary from manufacturer to manufacturer, or

even in the same device over time. Thus an RGB value does not define the

same color across devices without some kind of color management.

Typical RGB input devices are color TV and video cameras, image scanners, and digital

cameras. Typical RGB output devices are TV sets of various technologies

(CRT, LCD, plasma, OLED, quantum dots, etc.), computer and mobile

phone displays, video projectors, multicolor LED displays and large screens such

as Jumbotron. Color printers, on the other hand are not RGB devices, but subtractive

color devices. This article discusses concepts common to all the different color spaces

that use the RGB color model, which are used in one implementation or another in color

image-producing technology.

8

3.2 Additive Colors:

To form a color with RGB, three light beams must be superimposed. Each of the three

beams is called a component of that color, and each of them can have an arbitrary

intensity, from fully off to fully on, in mixture.

The RGB color model is additive in sense that three light beams are added together, and

their light spectra add, wavelength for wavelength, to make the final color's

spectrum. This is essentially opposite to the model, particularly the CMY color model

that applies to paints, inks, dyes, and other substances whose color depends

on reflecting the light under which we see them. Because of properties, these three colors

create white, this is in stark contrast to physical colors, such as dyes which create black

when mixed.

Zero intensity for each component gives the darkest color, and full intensity of each gives

a white; the quality of this white depends on the nature of the primary light sources, but if

they are properly balanced, the result is a neutral white matching the system's white

point. When the intensities for all the components are the same, the result is a shade of

gray, darker or lighter depending on the intensity. When the intensities are different, the

result is a colorized hue, more or less saturated depending on the difference of the

strongest and weakest of the intensities of the primary colors employed.

Figure 3.1: RGB color model

https://en.wikipedia.org/wiki/File:AdditiveColor.svg

9

yields yellow; adding green to blue yields cyan; adding blue to red yields magenta;

adding all three primary colors together yields white.

When one of the components has the strongest intensity, the color is a hue near this

primary color (red-ish, green-ish, or blue-ish), and when two components have the same

strongest intensity, then the color is a hue of a secondary color. A secondary color is

formed by the sum of two primary colors of equal intensity: cyan is green+blue, magenta

is blue+red, and yellow is red+green. Every secondary color is the complement of one

primary color: cyan complements red, magenta complements green, and yellow

complements blue. When all the primary colors are mixed in equal intensities, the result

is white.

The RGB color model itself does not define what is meant by red, green,

blue colorimetrically, and so the results of mixing them are not specified as absolute, but

relative to the primary colors. When the exact chromaticities of the red, green, and blue

primaries are defined, the color model then becomes an absolute color space, such

as sRGB or Adobe RGB; see RGB color space for more details.

Figure 3.2 Color wheel cycle

The above colors in clockwise from the top represent:

red,orange,yellow,chartreuse,green,spring,cyan,azure,blue,violet,magneta and rose

https://en.wikipedia.org/wiki/File:Color_wheel_circle.png

10

3.3 PHYSICAL PRINCIPLES FOR THE CHOICE OF RED, GREEN

AND BLUE:

Figure3.3 RGB color gamut

A set of primary colors, such as the sRGB primaries, define a color triangle; only colors

within this triangle can be reproduced by mixing the primary colors. Colors outside the

color triangle are therefore shown here as gray. The primaries and the D65 white point of

sRGB are shown. The background figure is the CIE xy chromaticity diagram.

The choice of primary colors is related to the physiology of the human eye; good

primaries are stimuli that maximize the difference between the responses of the cone

cells of the human retina to light of different wavelengths, and that thereby make a large

color triangle.

The normal three kinds of light-sensitive photoreceptor cells in the human eye (cone

cells) respond most to yellow (long wavelength or L), green (medium or M), and violet

(short or S) light (peak wavelengths near 570 nm, 540 nm and 440 nm, respectively). The

difference in the signals received from the three kinds allows the brain to differentiate a

wide gamut of different colors, while being most sensitive (overall) to yellowish-green

light and to differences between hues in the green-to-orange region.

11

As an example, suppose that light in the orange range of wavelengths (approximately

577 nm to 597 nm) enters the eye and strikes the retina. Light of these wavelengths

would activate both the medium and long wavelength cones of the retina, but not

equally—the long-wavelength cells will respond more. The difference in the response can

be detected by the brain, and this difference is the basis of our perception of orange.

Thus, the orange appearance of an object results from light from the object entering our

eye and stimulating the different cones simultaneously but to different degrees.

Use of the three primary colors is not sufficient to reproduce all colors; only colors within

the color triangle defined by the chromaticities of the primaries can be reproduced by

additive mixing of non-negative amounts of those colors of light.

3.4 Numeric Representations:

A color in the RGB color model is described by indicating how much of each of the red,

green, and blue is included. The color is expressed as an RGB triplet (r,g,b), each

component of which can vary from zero to a defined maximum value. If all the

components are at zero the result is black; if all are at maximum, the result is the brightest

representable white.

These ranges may be quantified in several different ways:

1. From 0 to 1, with any fractional value in between. This representation is used in

theoretical analyses, and in systems that use floating point representations.

2. Each color component value can also be written as a percentage, from 0% to

100%.

3. In computers, the component values are often stored as unsigned integer numbers

in range 0 to 255, the range that a single 8-bit byte can offer. These are often

represented as either decimal or hexadecimal numbers.

12

4. High-end digital image equipment are often able to deal with larger integer ranges

for each primary color, such as 0..1023(10 bits), 0..65535(16 bits) or larger, by

extending the 24-bits to 32-bit, 48-bit, 64-bit units.

 Figure 3.4 RGB color slider

A typical RGB color selector in graphics software. Each slider ranges from 0 to 255

Figure 3.5 Hexadecimal 8-bit RGB representations of the main 125 colors

https://en.wikipedia.org/wiki/File:RGB_sliders.svg

13

For example, brightest saturated red is written in the different RGB notations as:

Table 3.1Brightest saturated red in different RGB notations

Notation RGB triplet

Arithmetic (1.0, 0.0, 0.0)

Percentage (100%, 0%, 0%)

Digital 8-bit per channel
(255, 0, 0) or sometimes

#FF0000 (hexadecimal)

Digital 12-bit per channel (4095, 0, 0)

Digital 16-bit per channel (65535, 0, 0)

Digital 24-bit per channel (16777215, 0, 0)

Digital 32-bit per channel (4294967295, 0, 0)

14

In many environments, the component values within the ranges are not managed as

linear, as in digital cameras and TV broadcasting and receiving due to gamma

correction, for example. Linear and nonlinear transformations are often dealt with

via digital image processing. Representations with only 8 bits per component are

considered sufficient if gamma encoding is used.

15

4. HSV COLOR MODEL

4.1 Introduction:

A color model is an abstract mathematical model describing the way colors can be

represented as tuples of numbers, typically as three or four values or color components.

When this model is associated with a precise description of how the components are to be

interpreted (viewing conditions, etc.), the resulting set of colors is called "color space."

This section describes ways in which human color vision can be modeled. Unlike the

RGB color model, which is hardware-oriented, the HSV model is user-oriented, based on

the more intuitive appeal of combining hue, saturation, and value elements to create a

color.

HSV is a cylindrical color model that remaps the RGB primary colors into dimensions

that are easier for humans to understand. Like the Munsell Color System, these

dimensions are hue, saturation, and value. Hue, saturation, and value are the main color

properties that allow us to distinguish between different colors. Using color effectively

is one of the most essential elements in photography, as color can draw the viewer’s

eye to your composition and affect the mood and emotional impact your photo.

It is important to note that the three dimensions of the HSV color model are

interdependent. If the value dimension of a color is set to 0%, the amount of hue and

saturation does not matter as the color will be black. Likewise, if the saturation of a color

is set to 0%, the hue does not matter as there is no color used. Because the hue dimension

is circular, the HSV color model is best depicted as a cylinder. This is illustrated in the

interactive example below, where all possible color mixes are represented within the

bounds of the cylinder.

16

4.2 Hue, Saturation, Value:

Figure 4.1

Hue specifies the angle of the color on the RGB color circle. A 0° hue results in red,

120° results in green, and 240° results in blue.Hue is the color portion of the model,

expressed as a number from 0 to 360 degrees:

 Red falls between 0 and 60 degrees.

 Yellow falls between 61 and 120 degrees.

 Green falls between 121 and 180 degrees.

 Cyan falls between 181 and 240 degrees.

 Blue falls between 241 and 300 degrees.

 Magenta falls between 301 and 360 degrees.

Saturation controls the amount of color used. A color with 100% saturation will be the

purest color possible, while 0% saturation yields grayscale. Saturation describes the

amount of gray in a particular color, from 0 to 100 percent. Reducing this component

toward zero introduces more gray and produces a faded effect. Sometimes, saturation

appears as a range from 0 to 1, where 0 is gray, and 1 is a primary color.

Value controls the brightness of the color. A color with 0% brightness is pure black

while a color with 100% brightness has no black mixed into the color. Because this

17

dimension is often referred to as brightness, the HSV color model is sometimes called

HSB, including in P5.js. Value works in conjunction with saturation and describes the

brightness or intensity of the color, from 0 to 100 percent, where 0 is completely black,

and 100 is the brightest and reveals the most color.

4.3 HSV Representations:

The HSV color wheel is used to pick the desired color. Hue is represented by the circle in

the wheel. A separate triangle is used to represent saturation and value. The horizontal

axis of the triangle indicates value and the vertical axis represents saturation. When you

need a particular color for your picture, first you need to pick a color from the hue (the

circular region), and then from the vertical angle of the triangle you can select the desired

saturation. For brightness, you can select the desired value from the horizontal angle of

the triangle.

Sometimes the HSV model is illustrated as a cylindrical or conical object. When it is

represented as a conical object, hue is represented by the circular part of the cone. The

cone is usually represented in the three-dimensional form. The saturation is calculated

using the radius of the cone and value is the height of the cone. A hexagonal cone can

also be used to represent the HSV model. The advantage of the conical model is that it is

able to represent the HSV color space in a single object. Due to the two-dimensional

nature of computer interfaces, the conical model of HSV is best suited for selecting

colors for computer graphics.

The application of the cylindrical model of HSV color space is similar to the conical

model. Calculations are done in a similar way. Theoretically, the cylindrical model is the

most accurate form of HSV color space calculation. In practical use, it is not possible to

distinguish between saturation and hue when the value is lowered. The cylindrical model

has lost its relevance due to this and the cone shape is preferred over it.

18

4.4 Advantages of HSV:

The HSV color space is quite similar to the way in which humans perceive color. The

other models, except for HSL, define color in relation to the primary colors. The colors

used in HSV can be clearly defined by human perception, which is not always the case

with RGB or CMYK.

4.5 Uses and Applications of HSV:

Designers use the HSV color model when selecting colors for paint or ink because

HSV better represents how people relate to colors than the RGB color model does.

The HSV color wheel also contributes to high-quality graphics. Although less well-

known than its RGB and CMYK cousins, the HSV approach is available in many high-

end image editing software programs.

Selecting an HSV color begins with picking one of the available hues and then

adjusting the shade and brightness values.

HSV color space is widely used to generate high quality computer graphics or it is

used to select various different colors needed for a particular picture.

An HSV color wheel is used to select the desired color. A user can select the particular

color needed for the picture from the color wheel.

Used in color pickers, image editing software, image analysis, computer vision.

https://www.lifewire.com/free-photo-editors-1357098

19

5.COLOR DETECTION USING RGB

5.1 Introduction:

Color detection is the process of detecting the name of any color. Human eyes and brains

work together to translate light into color. Light receptors that are present in our eyes

transmit the signal to the brain. Our brain then recognizes the color. In computer it will be

done in a different way. With modern industrial production develops toward the high

speed and automatic direction, color recognition has been widely used in various

industrial detection and automatic control field. And the work of color identification

which is led by the human eye in the long-term production has been replaced by more

and more color sensors.

Color sensor detects color with comparison the object color with the reference color, and

if they are consistent in a certain error range, then output the detection results. Color

sensor can be applied in many fields, such as monitoring the production process and

product quality in the industry; the realization of the true color copy without affected by

environmental temperature, humidity, paper and toner influence in the electronic

reproduction aspects; a disease indicator to study a sickness in the Medical; and

automatic control in detection two adjacent label colors of a paper and automatically

count the number of all sorts of color by auto-counter in the commodity packaging.

5.2 The Data set:

Computer screens and related devices also rely on mixing three colors, except they need a

different set of primary colors because they are additive, starting with a black screen and adding

color to it. For additive color on computers, the colors red, green and blue (RGB)

are used. Each pixel on a screen is typically made up of three tiny "lights"; one red, one

green, and one blue. By increasing and decreasing the amount of light coming out of each

https://csfieldguide.org.nz/en/chapters/data-representation/images-and-colours/

20

of these three, all the different colors can be made. The following interactive allows you to

play around with RGB.

Colors are made up of 3 primary colors: red, green, and blue. In computers, we define

each color value within a range of 0 to 255. So in many ways we can define a color

256*256*256 = 16,581,375. There are approximately 16.5 million different ways to

represent a color. In our dataset, we need to map each color’s values with their

corresponding names. But don’t worry, we don’t need to map all the values. We will be

using a dataset that contains RGB values with their corresponding names. Csv file

includes 865 color names along with their RGB and hex values.

Steps for detecting color in an image:

Here are the steps to build an application in Python that can detect colors:

5.3 Algorithm:

Image Capture: The first step is to fetch a high-quality image with resolution.

To load an image from a file we use Cv2.imread(). The full path of the image has to

be given as input or else the input has to be in our working directory.

Img=cv2.imread(img path)

Extraction of RGB Colors: In this process, the 3 layered colors are extracted from

the input image. All the color images on screens such as televisions, computer,

monitors, laptops and mobile screens are produced by the combination of Red,

Green and Blue light. The intensity value of each color ranges between 0(lowest) to

255(highest). By combining any 3 primary colors at different intensity levels a large

variety of colors are produced.

For Example: If the intensity value of the colors is 0, this combination

corresponds to black. If the intensity value of the primary colors is 1, this

combination corresponds to white.

21

Index= ["color", "color_name", "hex", "R", "G", "B"]. This function calculates

the minimum distance from the coordinates. The minimum distance is calculated

by considering moving towards the origin point is circulated among all colors to

find the most matching color. The pandas library serves as an important utility to

perform various operations on comma-separated values. We need to read the csv file

and upload it into the pandas data frame.

D = abs(R-int(csv.loc[i ,"R"])) + abs (G-int (csv.loc[i ,"G"])) + abs (B- int

(csv.loc [i,"B"]))

Image Display with Shades of Color: The rectangle window is used to display the

image with shades of color. After the double-click is triggered, the RGB values

and color name is updated.

To display an image Cv2.imshow() method is used. The color name and its intensity

level will be displayed in a rectangular box.

text=getColorName(r,g,b) + 'R='+str(r) + 'G='+str(g) + 'B=' +str(b).

Figure 5.1 Architecture diagram for color detection

22

5.4 Import the required packages and load the image:

Import cv2

 import numpy as np

 import pandas as pdimg_path = “D://OpenCV//shape-detection//New folder//color

palette.jpg”

 img = cv2.imread(img_path)

 5.4.1 OpenCV-Python is a library of Python bindings designed to solve computer

vision problems.

cv2.imread () method loads an image from the specified file. If the image cannot be

read (because of missing file, improper permissions, unsupported or invalid format)

then this method returns an empty matrix.

Syntax: cv2.imread (path, flag)

Parameters:-

path: A string representing the path of the image to be read.

flag: It specifies the way in which image should be read. It’s default value

is cv2.IMREAD_COLOR

Return Value: This method returns an image that is loaded from the specified file.

cv2.IMREAD_COLOR: It specifies to load a color image. Any transparency of image

will be neglected. It is the default flag. Alternatively, we can pass integer value 1 for this

flag.

cv2.IMREAD_GRAYSCALE: It specifies to load an image in grayscale mode.

Alternatively, we can pass integer value 0 for this flag.

cv2.IMREAD_UNCHANGED: It specifies to load an image as such including alpha

channel. Alternatively, we can pass integer value -1 for this flag.

23

5.4.2 NumPy stands for Numerical Python. It is a Python library used for working with

arrays. It also has functions for working in domain of linear algebra, Fourier transform,

and matrices. It is an open source project and you can use it freely. In Python we have

lists that serve the purpose of arrays, but they are slow to process. It aims to provide an

array object that is up to 50x faster than traditional Python lists. The array object in

NumPy is called ndarray, it provides a lot of supporting functions that make working

with ndarray very easy. Arrays are very frequently used in data science, where speed and

resources are very important.

5.4.3 Pandas is a Python package that provides fast, flexible, and expressive data

structures designed to make working with structured (tabular, multidimensional,

potentially heterogeneous) and time series data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real world data analysis in

Python. Additionally, it has the broader goal of becoming the most powerful and flexible

open source data analysis / manipulation tool available in any language.

Pandas can easily do:

 Easy handling of missing data in floating point as well as non-floating point data

 Size mutability: columns can be inserted and deleted from DataFrame and higher

dimensional objects

 Automatic and explicit data alignment: objects can be explicitly aligned to a set of

labels, or the user can simply ignore the labels and let Series, DataFrame, etc.

automatically align the data for you in computations

 Powerful, flexible group by functionality to perform split-apply-combine

operations on data sets, for both aggregating and transforming data

 Make it easy to convert ragged, differently-indexed data in other Python and

NumPy data structures into DataFrame objects

 Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

 Intuitive merging and joining data sets

 Flexible reshaping and pivoting of data sets

24

 Hierarchical labelling of axes (possible to have multiple labels per tick)

 Robust IO tools for loading data from flat files (CSV and delimited), Excel files,

databases, and saving / loading data from the ultrafast HDF5 format

 Time series-specific functionality: date range generation and frequency

conversion, moving window statistics, date shifting and lagging.

5.5 Read the CSV file with pandas:

The pandas library is very useful when we need to perform various operations on data files

like CSV. pd.read_csv() reads the CSV file and loads it into the pandas DataFrame. We

have assigned each column with a name for easy accessing.

index=[“color”,”color_name”,”hex”,”R”,”G”,”B”]

csv = pd.read_csv(‘colors.csv’, names=index, header=None)

5.5.1 Index () is an inbuilt function in Python, which searches for a given element from

the start of the list and returns the lowest index where the element appears.

Syntax:

list_name.index(element,start,end):

element - The element whose lowest index will be returned.

start (Optional) - The position from where the search begins.

end (Optional) - The position from where the search ends.

Returns:

Returns lowest index where the element appears.

a)List Index:

The index () method returns the position at the first occurrence of the specified value.

Syntax:

list. Index (elmnt)

25

Parameters:

Element – Any type (string,number,list, etc.). The element to search for

b)String Index:

The index () method finds the first occurrence of the specified value.

The index () method raises an exception if the value is not found.

The index () method is almost the same as the find () method, the only difference is that

the find ()method returns -1 if the value is not found.

Syntax:

string.Index (value, start, end)

Value - The value to search for

start (Optional) - The position from where the search begins. Default is 0.

end (Optional) - The position from where the search ends. Default is to the end of the

string.

5.5.2 A CSV (Comma Separated Values) format is one of the most simple and common

ways to store tabular data. To represent a CSV file, it must be saved with the .csv file

extension. To read a CSV file in Python, we can use the csv.reader () function. To write

to a CSV file in Python, we can use the csv.writer () function. The csv.writer () function

returns a writer object that converts the user's data into a delimited string. This string

can later be used to write into CSV files using the writerow () function.

5.6 Set a mouse callback event on a window:

First, we created a window in which the input image will display. Then, we set a callback

function which will be called when a mouse event happens.

cv2.namedWindow (‘color detection’)

cv2.setMouseCallback (‘color detection’, draw function)

26

First we create a mouse callback function which is executed when a mouse event take

place. Mouse event can be anything related to mouse like left-button down, left-button

up, left-button double-click etc. It gives us the coordinates (x, y) for every mouse event.

With this event and location, we can do whatever we like. Creating mouse callback

function has a specific format which is same everywhere. It differs only in what the

function does. So our mouse callback function does one thing, it draws a circle where we

double-click. For improvement we can also draw either rectangles or circles (depending

on the mode we select) by dragging the mouse like we do in Paint application. So our

mouse callback function has two parts, one to draw rectangle and other to draw the

circles.

5.7 Create the draw_function:

It will calculate the rgb values of the pixel which we double click. The function

parameters have the event name, (x, y) coordinates of the mouse position, etc. In the

function, we check if the event is double-clicked then we calculate and set the r, g, b

values along with x,y positions of the mouse.

def draw_function(event, x,y,flags,param):

 if event == cv2.EVENT_LBUTTONDBLCLK:

 global b,g,r,xpos,ypos, clicked

 clicked = True

 xpos = x

 ypos = y

 b,g,r = img[y,x]

 b = int(b)

 g = int(g)

 r = int(r)

27

To find the RGB value of a pixel we use PIL.Image.Image.getpixel ()

Call PIL.Image.open (fp) with fp as the filename of the image to return

a PIL.Image.Image object.Call PIL.Image.Image.convert

(mode) with mode as "RGB" to return a PIL.Image.Image object in the RGB

colorspace. Call PIL.Image.Image.getpixel (xy) with xy as a tuple containing

the x and y coordinates of the desired pixel to return its RGB value.

Input: red image

red_image = PIL.Image.open("red_image.png") {Create a PIL.Image object}

red_image_rgb = red_image.convert("RGB") {Convert to RGB colorspace}

rgb_pixel_value = red_image_rgb.getpixel((10,15)) {Get color from (x, y) coordinates}

print (rgb_pixel_value)

Output = (255, 0, 0)

In this way get the numbers for the given color pixel values

5.8 Calculate distance to get color name:

We have the r, g and b values. Now, we need another function which will return us the

color name from RGB values. To get the color name, we calculate a distance (d) which

tells us how close we are to color and choose the one having minimum distance.

Our distance is calculated by this formula:

d = abs (Red — ithRedColor) + (Green — ithGreenColor) + (Blue — ithBlueColor)

def getColorName(R,G,B):

 minimum = 10000

 for i in range(len(csv)):

 d = abs(R- int(csv.loc[i,"R"])) + abs(G- int(csv.loc[i,"G"]))+ abs(B-

int(csv.loc[i,"B"]))

 if(d<=minimum):

 minimum = d

https://kite.com/python/docs/PIL.Image.open
https://kite.com/python/docs/PIL.Image.Image
https://kite.com/python/docs/PIL.Image.Image.convert
https://kite.com/python/docs/PIL.Image.Image.convert
https://kite.com/python/docs/PIL.Image.Image
https://kite.com/python/docs/PIL.Image.Image.getpixel

28

 cname = csv.loc[i,"color_name"]

 return cname

5.9 Display image on the window:

Whenever a double click event occurs, it will update the color name and RGB values on

the window.

Using the cv2.imshow () function, we draw the image on the window. When the user

double clicks the window, we draw a rectangle and get the color name to draw text on the

window using cv2.rectangle and cv2.putText () functions.

while(1):cv2.imshow("color detection",img)

 if (clicked):

 cv2.rectangle(img,(20,20), (750,60), (b,g,r), -1) text =

getColorName(r,g,b)+'R='+str(r)+'G='+ str(g) +'B='+ str(b)

 cv2.putText(img, text,(50,50),2,0.8,

(255,255,255),2,cv2.LINE_AA) if(r+g+b>=600):

 cv2.putText(img, text,(50,50),2,0.8,(0,0,0),2,cv2.LINE_AA)

 clicked=Falseif cv2.waitKey(20) & 0xFF ==27:

 break

cv2.destroyAllWindows()

cv2.imshow () method is used to display an image in a window. The window

automatically fits to the image size. As Open CV is designed to solve the computer

vision problems.

Syntax: cv2.imshow (window_name, image)

Parameters:

window_name: A string representing the name of the window in which image to be

29

displayed.

image: It is the image that is to be displayed.

Return Value: It doesn’t returns anything.

destroyAllWindows() simply destroys all the windows we created. To destroy any

specific window, use the function cv2. destroyWindow() where you pass the exact

window name.

30

6.OBJECT DETECTION AND TRACKING USING HSV

6.1 Introduction:

This is an implementation of detecting multiple colors (here,only red, green and blue

colors have been considered) in real-time using Python programming language. For a

robot to visualize the environment, along with the object detection, detection of its

color in real-time is also very important. Detection and tracing of target is performed by

color attribute using HSV color model. Here red, green and blue colors are bounded by

their respective colored rectangular boxes and the name of the color is displayed on the

top of the rectangular box.

Some real world applications:

 In self-driving car, to detect the traffic signals.

 Multiple color detection is used in some industrial robots, to performing pick-

and-place task in separating different colored objects.

Steps for detection and tracking:

First step is to capture the video through webcam.This is taken as input .The

image frames are accessed from the video stream.The HSV color model can handle

changes caused by lighting.Hence the image stored in RGB format has to be

transformed into HSV .This color model describes color in terms of the amount of

gray and their brightness value.Hue value is extended from 0-179,Saturation value is

extended from 0-255 and Value is extended from 0-255 respectively.The

corresponding mask is made by defining the range of each color (red,green and

blue).Noise causes internal imperfections,hence it has to be

removed.Morpholoagical technique called dilation is used for this purpose.To

specifically detect red,green and blue and discard others ,bitwise and is performed

between the image frame and mask.All the points which are having same color or

31

intensity have to be bounded by a rectangular box .As the object with red, green

or blue color advances in the live recording, the bounding box also advances with

it .Here the goal for detecting and tracing the red ,green and blue colored object is

achieved.

Figure 6.1 : Block diagram for object detection and tracking

6.2 Input: Capture video through webcam:

A video is a sequence of fast moving images. The measure of how fast the images are

transitioning is given by a metric called frames per second (FPS). If the video has an FPS of 40,

it means that 40 images are being displayed every second. Alternatively, after every 25

milliseconds, a new frame is displayed. The other important attributes are the width and height of

the frame.

6.2.1 Reading a Video:

In OpenCV, a video can be read either by using the feed from a camera connected to a

computer or by reading a video file. The first step towards reading a video file is to create

32

a VideoCapture object. Its argument can be either the device index or the name of the

video file to be read. In most cases, only one camera is connected to the system. So, all

we do is pass ‘0’ and OpenCV uses the only camera attached to the computer. When

more than one camera is connected to the computer, we can select the second camera by

passing ‘1’, the third camera by passing ‘2’ and so on.

We are going to apply the function cv2.VideoCapture and create a class instance. As an

argument we can specify the input video file name. On the other hand, in order to access

 a video stream, we will put the camera parameters instead. We can provide an index of

 our camera from which we want to read data. In case that you only have one camera, by

 default, it will be indexed with 0. If you have more than one camera the second will be

 named 1, third with 2 and so on. Let’s show this in an example.

Figure 6.2 video capture

33

6.2.2 Displaying a video:

After reading a video file, we can display the video frame by frame. A frame of a video is

simply an image and we display each frame the same way we display images, i.e., we use

the function imshow ().

As in the case of an image, we use the waitKey () after imshow () function to pause each

frame in the video. In the case of an image, we pass ‘0’ to the waitKey () function, but for

playing a video, we need to pass a number greater than ‘0’ to the waitKey () function.

This is because ‘0’ would pause the frame in the video for an infinite amount of time and

in a video we need each frame to be shown only for some finite interval of time. So, we

need to pass a number greater than ‘0’ to the waitKey () function. This number is equal to

the time in milliseconds we want each frame to be displayed.

While reading the frames from a webcam, using waitKey (1) is appropriate because the

display frame rate will be limited by the frame rate of the webcam even if we specify a

delay of 1 ms in waitKey. While reading frames from a video that you are processing, it

may still be appropriate to set the time delay to 1 ms so that the thread is freed up to do

the processing we want to do. In rare cases, when the playback needs to be at a certain

framerate, we may want the delay to be higher than 1 ms.

6.3. Read the video stream in image frames:

At the start of this process our indicator is on the first frame. When we apply

command cap.read() the first frame from our video file will be loaded. It will be stored in

a variable frame. If we call this command again, the second frame will be loaded and so

on. Variable ret is a boolean data type that returns True if we are able to execute

the read function successfully. Our frame can be loaded as a color image (it will have 3

channels) or grayscale image (it will have 1 channel). If we need more then one frame we

will use “for” or “while” loops. We will explain that in more detail in the further text.

34

Figure 6.3 while loop

After we read a video file or capture a live stream, we want to process and display our

video output. The following code creates a while loop that reads frames from our video

continuously. We can do this with a command cap.read(). Our frame is stored in

a frame variable and ret is boolean data type that returns True if Python is able to read

the VideoCapture object. After we finish this process we can release our output with

command cap.release().

6.4 Convert the imageFrame in BGR to HSV color space:

The HSV or Hue, Saturation and Value of a given object is the color space associated

with the object in OpenCV where Hue represents the color, Saturation represents the

greyness and Value represents the brightness and it is used to solve the problems related

35

to computer vision because of its better performance when compared to RGB or Red,

Blue and Green color space and the Hue range in HSV is [0,179], the Saturation range in

HSV is [0,255] and the Value range in HSV is [0,255] and to perform object detection,

finding the range of HSV is necessary.

The syntax to define HSV range in OpenCV is as follows:

hsvcolorspace = cv.cvtColor(image, cv.COLOR_BGR2HSV)

lower_hsvcolorspace = np.array([Hue range, Saturation range, Value range])

upper_hsvcolorspace = np.array([Hue range, Saturation range, Value range])

 Where hsvcolorspace is the conversion of the given image in RGB format to HSV

format, lower_hsvcolorspace is the lower threshold for a range of some color,

upper_hsvcolorspace is the upper threshold for a range of some color.

6.4.1 Working of HSV range in OpenCV:

 The HSV or Hue, Saturation, and value of a given object is the color space

associated with the object in OpenCV.

 The Hue in HSV represents the color, Saturation in HSV represents the greyness,

and Value in HSV represents the brightness.

 Whenever we want to solve problems related to object detection, it is necessary to

use HSV and find the range of HSV.

 The Hue, Saturation, and Value in HSV have their own range of values.

 The Hue range in HSV is [0,179], the Saturation range in HSV is [0,255] and the

Value range in HSV is [0,255].

 There is also an upper bound and lower bound range for a range of each color in

HSV.

 The HSV or Hue, Saturation, and value of a given object provide better

performance when compared to RGB or Red, Blue, and Green color space and

hence it is used widely in the area of computer vision.

36

6.5. Masking:

Color segmentation or color filtering is widely used in OpenCV for identifying specific

objects/regions having a specific color. The most widely used color space is RGB color

space, it is called an additive color space as the three color shades add up to give color

to the image. To identify a region of a specific color, put the threshold and create a

mask to separate the different colors. HSV color space is much more useful for this

purpose as the colors in HSV space are much more localized thus can be easily

separated. Color Filtering has many applications and uses cases such as in

Cryptography, infrared analysis, food preservation of perishable foods, etc. In such

cases, the concepts of Image processing can be used to find out or extract out regions of

a particular color. For color segmentation, all we need is the threshold values or the

knowledge of the lower bound and upper bound range of colors in one of the color

spaces. It works best in the Hue-Saturation-Value color space.

After specifying the range of color to be segmented, it is needed to create a mask

accordingly and by using it, a particular region of interest can be separated out.

Masking involves setting some of the pixel values in an image to zero, or some other

"background" value. Masking can be done in one of two ways:

 Using an image as a mask. A mask image is simply an image where some of the

 pixel intensity values are zero, and others are non-zero. Wherever the pixel

intensity value is zero in the mask image, then the pixel intensity of the resulting

masked image will be set to the background value (normally zero). You might, for

example, create a mask image using the Particle Analysis tool.

 Using a set of ROIs as the mask. The ROIs for each slice are used to define the

mask.

 Hard masking. Pixels affected by masking have their intensity set to the

background value.

 Soft masking. For pixels affected by masking, the resulting intensity change is

depends on how much of the pixel is inside the ROI. For masking outside, if only

37

 a small portion of the pixel is inside an ROI, the resulting will be close to the

background value; if a large portion is inside the ROI, its intensity will be largely

unaffected. Below you can see the result masking of an image using an Irregular

ROI, with both hard and soft masking.

6.6 Morphological Transform:

Morphological transformations are some simple operations based on the image shape. It

is normally performed on binary images. It is used to remove noise on the images. It

needs two inputs, one is our original image, and second one is called structuring

element or kernel which decides the nature of operation. Two basic morphological

operators are Erosion and Dilation. Then its variant forms like Opening, Closing,

Gradient etc. also comes into play.

6.6.1. Erosion:

The basic idea of erosion is just like soil erosion only, it erodes away the boundaries of

foreground object (Always try to keep foreground in white). So what does it do? The

kernel slides through the image (as in 2D convolution). A pixel in the original image

(either 1 or 0) will be considered 1 only if all the pixels under the kernel is 1, otherwise it

 is eroded (made to zero).

So what happens is that, all the pixels near boundary will be discarded depending upon

the size of kernel. So the thickness or size of the foreground object decreases or simply

white region decreases in the image. It is useful for removing small white noises (as we

have seen in colorspace chapter), detach two connected objects etc.

Syntax: erosion = cv2.erode (img,kernel,iterations = 1)

6.6.2. Dilation:

 It is just opposite of erosion. Here, a pixel element is ‘1’ if at least one pixel under the

kernel is ‘1’. So it increases the white region in the image or size of foreground object

38

increases. Normally, in cases like noise removal, erosion is followed by dilation.

Because, erosion removes white noises, but it also shrinks our object. So we dilate it.

 Since noise is gone, they won’t come back, but our object area increases. It is also useful

in joining broken parts of an object.

Syntax: dilation = cv2.dilate (img,kernel,iterations = 1)

6.6.3 Opening:

Opening is just another name of erosion followed by dilation. It is useful in removing

noise, as we explained above. Here we use the function, cv2.morphologyEx ().

Syntax: opening = cv2.morphologyEx (img, cv2.MORPH_OPEN, kernel)

6.6.4 Closing:

Closing is reverse of Opening, Dilation followed by Erosion. It is useful in closing small

 holes inside the foreground objects, or small black points on the object.

Syntax: closing = cv2.morphologyEx (img, cv2.MORPH_CLOSE, kernel)

6.6.5 Morphological Gradient:

It is the difference between dilation and erosion of an image. The result will look like the

 outline of the object.

Syntax: gradient = cv2.morphologyEx (img, cv2.MORPH_GRADIENT, kernel)

6.6.6 Top Hat:

It is the difference between input image and Opening of the image. Below example is

done for a 9x9 kernel.

Syntax: tophat = cv2.morphologyEx (img, cv2.MORPH_TOPHAT, kernel)

39

6.6.7 Black Hat:

It is the difference between the closing of the input image and input image.

Syntax: blackhat = cv2.morphologyEx (img, cv2.MORPH_BLACKHAT, kernel)

6.6.8 Structuring Element:

We manually created a structuring elements in the previous examples with help of

Numpy. It is rectangular shape. But in some cases, you may need elliptical/circular

shaped kernels. So for this purpose, OpenCV has a function, cv2.getStructuringElement

(). You just pass the shape and size of the kernel, you get the desired kernel.

6.7. Bitwise_and between the image frame and mask is performed to it

and others are discarded:

Bitwise operations can be used in image manipulations. These bitwise techniques are

used in many computer vision applications like for creating masks of the image, adding

watermarks to the image and it is possible to create a new image using these bitwise

operators. These operations work on the individual pixels in the image to give accurate

results compared with other morphing techniques in OpenCV.

We can create a square, circle & rectangle with white pixels and a background with black

pixels using these we will differentiate each bitwise function individually.

6.7.1.In this we use bitwise AND operator:

 Bitwise AND:

This function calculates the conjunction of pixels in both images. This operation

 only considers pixels that are common with image 1 and image 2 and remaining

pixels are removed from the output image.

 bit-and = cv2.bitwise_and(img1,img2)

 cv2_imshow(bit-and)

The AND function only the intersected regions in both images are displayed.

https://analyticsindiamag.com/how-i-created-my-own-data-for-object-detection-and-segmentation/
http://conjunction/

40

6.8. Create contour to track each color:

6.8.1 Contours:

Contours can be explained simply as a curve joining all the continuous points (along the

 boundary), having same color or intensity. The contours are a useful tool for shape

 analysis and object detection and recognition.

 For better accuracy, use binary images. So before finding contours, apply

threshold or canny edge detection.

 Since OpenCV 3.2, findContours() no longer modifies the source image.

 In OpenCV, finding contours is like finding white object from black background.

So remember, object to be found should be white and background should be

black.

6.8.2 to draw the contours:

To draw the contours, cv.drawContours function is used. It can also be used to draw any

shape provided you have its boundary points. Its first argument is source image, second

argument is the contours which should be passed as a Python list, third argument is index

of contours (useful when drawing individual contour. To draw all contours, pass -1) and

remaining arguments are color, thickness etc.

 To draw all the contours in an image:

 cv.drawContours(img, contours, -1, (0,255,0), 3)

 To draw an individual contour, say 4th contour:

 cv.drawContours(img, contours, 3, (0,255,0), 3)

 But most of the time, below method will be useful:

cnt = contours[4]

 cv.drawContours(img, [cnt], 0, (0,255,0), 3)

https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gadf1ad6a0b82947fa1fe3c3d497f260e0
https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc

41

6.8.3 Contour approximation method:

If you pass cv.CHAIN_APPROX_NONE, all the boundary points are stored. But

actually do we need all the points? For eg, you found the contour of a straight line. Do

you need all the points on the line to represent that line? No, we need just two end points

of that line. This is what cv.CHAIN_APPROX_SIMPLE does. It removes all redundant

points and compresses the contour, thereby saving memory.

Below figure 6.4 demonstrate this technique. Just draw a circle on all the coordinates in

the contour array (drawn in blue color). First image shows points I got

with cv.CHAIN_APPROX_NONE (734 points) and second image shows the one

with cv.CHAIN_APPROX_SIMPLE (only 4 points). See, how much memory it

saves!!!

Figure 6.4

6.8.4 Bounding boxes:

Bounding boxes are one of the most popular—and recognized tools when it comes to

image processing for image and video annotation projects. A bounding box is an

imaginary rectangle that serves as a point of reference for object detection and

creates a collision box for that object.

https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gga4303f45752694956374734a03c54d5ffaf7d9a3582d021d5dadcb0e37201a62f8
https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gga4303f45752694956374734a03c54d5ffa5f2883048e654999209f88ba04c302f5
https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gga4303f45752694956374734a03c54d5ffaf7d9a3582d021d5dadcb0e37201a62f8
https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gga4303f45752694956374734a03c54d5ffa5f2883048e654999209f88ba04c302f5

42

Image processing is one of the main reasons why computer vision continues to

improve and drive innovative AI-based technologies. From self-driving cars to facial

recognition technology—computer vision applications are the face of new tech.

Data annotators draw these rectangles over images, outlining the object of interest

within each image by defining its X and Y coordinates. This makes it easier for

machine learning algorithms to find what they’re looking for, determine collision

paths, and conserves valuable computing resources. Bounding boxes are one of the

most popular image annotation techniques in deep learning. Compared to other

image processing methods, this method can reduce costs and increase annotation

efficiency.

6.8.5 Using Bounding Boxes for Object Detection:

But how does object detection work in relation to bounding boxes for this we require

looking at object detection as two components: object classification and object

localization. In other words, to detect an object in an image, the computer needs to

know what it is and where it is.

Take self-driving cars as an example. An annotator will draw bounding boxes around

other vehicles and label them. This helps train an algorithm to understand what

vehicles look like. Annotating objects such as vehicles, traffic signals, and

pedestrians makes it possible for autonomous vehicles to maneuver busy streets

safely. Self-driving car perception models rely heavily on bounding boxes to make

this possible.

However, it’s important to note that a single bounding box doesn’t guarantee a

perfect prediction rate. Enhanced object detection requires many bounding boxes in

combination with data augmentation techniques.

43

6.8.6 Common Use Cases for Bounding Boxes:

There are a variety of use cases for image processing and bounding boxes. Some of

the more popular ones include:

 Self-driving cars

 Insurance claims

 Ecommerce

 Agriculture

 Healthcare

Bounding boxes are used in all of these areas to train algorithms to identify patterns.

An insurance company may leverage machine learning to document insurance claims

for car accidents, while an agriculture company could use it to identify what stage of

growth a plant is in.

6.9. Output:

To achive the goal the first step is to capture the video through webcam.This is taken

as input .The image frames are accessed from the video stream.The HSV color model

can handle changes caused by lighting.Hence the image stored in RGB format has to

be transformed into HSV .This color model describes color in terms of the amount of

gray and their brightness value.Hue value is extended from 0-179,Saturation value is

extended from 0-255 and Value is extended from 0-255 respectively.The

corresponding is made by defining the range of each color (red,green and blue).Noise

causes internal imperfections,hence it has to be removed.Morpholoagical technique

called diation is used for this purpose.To specifically detect red,green and blue and

discard others ,bitwise and is performed between the image frame and mask.All the

points which are having same color or intensity have to be bounded by a rectangular

box .As the object with red, green or blue color advances in the live recording, the

bounding box alse advances with it .Here the goal for detecting and tracing the red

,green and blue colored object is achieved

44

7. Results and Discussions:

Figure 7.1 is the input image in which we have to detect the color. In this

input image you can double click at any position to get the name of the color

and their respective R, G, B values. Figure 7.2 is the output image with color

intensity RGB values as R=238, G=206, B=84 for sandstorm color. Figure 7.3 is

the output image with color intensity RGB values as R=199, G=67, B= 73 for

Brick Red color.

Figure 7.1 Original input image of Buildings

45

Figure 7.2 Output image with Color intensity RGB values as R=238 G=206 B=84 for

Sandstorm

Figure 7.3 Output image with Color intensity RGB values as R=199 G=67 B=73 for

Brick Red

46

Figure 7.4 shows the detection and tracing of red, blue and green colored

target. Detection and tracing of target is performed by color attribute using HSV

color model. Here red, green and blue colors are bounded by their respective colored

rectangular boxes and the name of the color is displayed on the top of the rectangular

box.

Figure 7.4 Object detection and tracing using red, green and blue color

47

8.Conclusion

By employing the proposed technique for object detection and tracing, we can

directly acquire the label of the color and their R, G, B values just by clicking on the

image which is provided as input. It also tracks three different colors (red, green and

blue) using webcam. When there is any color from red, green, blue, or all the three

at the same time, rectangular boxes of red color for tracking of red, blue rectangular

box for tracking of blue, green rectangular box for tracking of green are formed and

the name of the color is displayed on the top of the object.

48

9.References

[1] L. Feng, L. Xiaoyu and C. Yi, "An efficient detection method for rare colored

capsule based on RGB and HSV color space," 2014 IEEE International

Conference on Granular Computing (GrC), 2014, pp. 175-178, doi:

10.1109/GRC.2014.6982830.

[2] G. Pavithra, J. J. Jose and T. A. Chandrappa, "Real-time color classification of

objects from video streams," 2017 2nd IEEE International Conference on Recent

Trends in Electronics, Information & Communication Technology (RTEICT), 2017,

pp. 1683-1686, doi: 10.1109/RTEICT.2017.8256886.

[3] S. Matuska, R. Hudec and M. Benco, "The comparison of CPU time

consumption for image processing algorithm in Matlab and OpenCV," 2012

ELEKTRO, 2012, pp. 75-78, doi: 10.1109/ELEKTRO.2012.6225575.

[4] Vishesh Goel, Sahil Singhal, Silica Kole “Specific Color Detection in Images

using RGB Modelling in MATLAB” International Journal of Computer

Applications (0975 – 8887) Volume 161 – No 8, March 2017.

[5] K. Cameron and M. S. Islam, "Multiple Objects Detection using HSV,"

NAECON 2018 - IEEE National Aerospace and Electronics Conference, 2018, pp.

270-273, doi: 10.1109/NAECON.2018.8556711.

[6] H. Altun, R. Sinekli, U. Tekbas, F. Karakaya and M. Peker, "An efficient color

detection in RGB space using hierarchical neural network structure," 2011

International Symposium on Innovations in Intelligent Systems and Applications,

2011, pp. 154-158, doi: 10.1109/INISTA.2011.5946088.

[7] M. M. Aznaveh, H. Mirzaei, E. Roshan and M. Saraee, "A new color-based

method for skin detection using RGB vector space," 2008 Conference on Human

System Interactions, 2008, pp. 932-935, doi: 10.1109/HSI.2008.4581568.

[8] G. Li, R. Yuan, Z. Yang and X. Huang, "A Yellow License Plate Location

Method Based on RGB Model of Color Image and Texture of Plate," Second

Workshop on Digital Media and its Application in Museum & Heritages (DMAMH

2007), 2007, pp. 42-46, doi: 10.1109/DMAMH.2007.35.

49

PAPER PUBLICATION DETAILS

• Paper Title: Real Time Color Detection And Tracking Using Color Feature

• Status : Accepted for journal publication and oral presentation in the ONLINE

MEGA INTERNATIONAL CONFERENCE ON “SMART MODERNISTIC IN

ELECTRONICS AND COMMUNICATION” (ICSMEC-21) conducted by St.

Martin’s Engineering College on 2nd and 3rd July

• Paper ID: ICSMEC21-0103

• Authors: B.Bavitha , R.Navya Sai ,M.Haritha , K.H.Grace, Mr.P.Murugapandiyan

	2.1 History:
	2.2 Computer Vision:
	2.4 Features of OpenCV Library:
	2.5 OpenCV Library Modules:
	Core Functionality:
	Image Processing:
	Video and Video I/O:
	Objdetect:

	4.3 HSV Representations:
	4.4 Advantages of HSV:
	5.2 The Data set:
	Steps for detecting color in an image:
	5.5 Read the CSV file with pandas:
	Parameters:
	Element – Any type (string,number,list, etc.). The element to search for

	5.6 Set a mouse callback event on a window:
	To find the RGB value of a pixel we use PIL.Image.Image.getpixel ()

	5.8 Calculate distance to get color name:
	5.9 Display image on the window:
	6.2.1 Reading a Video:
	In OpenCV, a video can be read either by using the feed from a camera connected to a computer or by reading a video file. The first step towards reading a video file is to create a VideoCapture object. Its argument can be either the device index or th...
	6.2.2 Displaying a video:
	6.4.1 Working of HSV range in OpenCV:
	6.7.1.In this we use bitwise AND operator:
	 Bitwise AND:
	This function calculates the conjunction of pixels in both images. This operation
	only considers pixels that are common with image 1 and image 2 and remaining
	pixels are removed from the output image.

	6.8.2 to draw the contours:
	6.8.5 Using Bounding Boxes for Object Detection:
	6.8.6 Common Use Cases for Bounding Boxes:

