

SMART GLOVE FOR SIGN LANGUAGE TRANSLATION

USING ARDUINO

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

K.RAVI CHANDRA (317126512032) K.S.D.CHARISHMA PATNAIK

 (318126512L06)

V.SUHRUTH(317126512056) M.J.N.SANDEEP(317126512035)

Under the guidance of

Mr.D.Anil Prasad

Assistant Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)
(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P)

(2020-2021)

i

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Mr. D. Anil Prasad,

Assistant professor, Department of Electronics and Communication Engineering, ANITS, for

his/her guidance with unsurpassed knowledge and immense encouragement. We are grateful

to Dr. V. Rajyalakshmi, Head of the Department, Electronics and Communication

Engineering, for providing us with the required facilities for the completion of the project

work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa, for

their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all non-

teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting us

directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

 K. RAVI CHANDRA (317126512032),

 K.S.D. CHARISHMA PATNAIK (318126512L06),

 V. SUHRUTH (317126512056),

 M.J.N. SANDEEP (317126512035).

ii

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with

‘A’ Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)

 CERTIFICATE

This is to certify that the project report entitled “SMART GLOVE FOR SIGN

LANGUAGE TRANSLATION USING ARDUINO” submitted by K.RAVI CHANDRA

(317126512032), K.S.D.CHARISHMA PATNAIK (318126512L06), V.SUHRUTH

(317126512056), M.J.N.SANDEEP (317126512035) in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Electronics &

Communication Engineering of Andhra University, Visakhapatnam is a record of bonafide

work carried out under my guidance and supervision.

Project Guide Head of the Department

Mr. D. Anil Prasad Dr. V. Rajyalakshmi

Assistant Professor Professor & HOD

Department of E.C.E Department of E.C.E

ANITS ANITS

iii

CONTENTS

ABSTRACT v

LIST OF FIGURES vi

LIST OF TABLES viii

CHAPTER 1 INTRODUCTION 01

1.1 Project Objective 02

1.2 Project Outline 02

CHAPTER 2 SIGN LANGUAGE DESCRIPTION 03

2.1 Different sign languages 03

2.2 Standard signs 08

2.3 Advantages 09

CHAPTER 3 SENSORS AND COMPONENTS

3.1 Flex sensor

3.1.1 Flex sensor overview 10

3.1.2 Flex Sensor Working 11

3.1.3 Reading a Flex Sensor 12

3.1.4 Basic Flex Circuit and Characteristics 13

3.2 Accelerometer Sensor (MPU6050)

 3.2.1 MPU6050 Module Hardware Overview 14

 3.2.2 MPU6050 Module Pinout 15

 3.2.3 The I2C Interface 16

 3.2.4 Measuring Acceleration 16

 3.2.5 Measuring Rotation 16

 3.2.6 Measuring Temperature 17

 3.3 Touch Sensor 17

 3.3.1 Touch Sensor Pinout 18

 3.3.2 Working Principle of Touch Sensor 18

 3.3.3 Circuit of Touch Sensor Interfacing with Arduino 19

 3.4 HC-05 Bluetooth Module 19

 3.4.1 HC-05 Bluetooth Module Pinout 21

 3.4.2 HC-05 Technical Specifications 21

 3.4.3 HC-05 Default Settings 22

 3.4.4 Where to use HC-05 Bluetooth module 22

 3.4.5 How to Use the HC-05 Bluetooth module 22

 3.5 Arduino UNO 23

 3.5.1 History 24

 3.5.2 Arduino UNO Pinout 25

 3.5.3 Technical Specifications 27

 3.5.4 Communications 27

 3.5.5 Applications of Arduino Uno ATmega328 28

CHAPTER 4 ARDUINO PROGRAMMING 29

 4.1 Arduino Board Types 29

 4.2 Board Description 32

iv

 4.3 Arduino Pinout 35

 4.4 Programming 36

 4.4.1 Basics 36

 4.4.2 Syntax and Programme Flow 38

 4.4.3 Serial Functions 40

 4.4.4 AnalogRead 42

 4.4.5 Arduino Data Types 42

 4.4.6 Arduino Variables 43

 4.4.7 Arduino Operators 43

 4.4.8 Arduino IF Statement 47

 4.5 Arduino Sensors 49

CHAPTER 5 RESULTS AND DISCUSSIONS 53

 5.1 Arduino Simulator 53

 5.1.1 Advantages of Using a Simulator 53

 5.1.2 Types of Simulator 53

 5.1.3 Accessing Simulator 54

 5.1.4 Features of Simulator 57

 5.2 Flex Sensor Simulation 57

 5.2.1 Connection of Flex Sensor 57

 5.2.2 Result of Flex Sensor 58

 5.3 Accelerometer Simulation 59

 5.3.1 Connection of Accelerometer 59

 5.3.2 Result of Accelerometer 60

 5.4 Touch Sensor simulation 60

CHAPTER 6 CONCLUSIONS 64

REFERENCES 65

v

ABSTRACT

Speech is the easiest way for communication in the world. It becomes difficult for speech

impaired people to communicate with normal people as they use sign language for

communication. When a speech-impaired person communicates with normal person, the

bridge gap between speech impaired and normal masses is too much to fill. The gesture

recognition can be done in two ways, Image processing based and sensor-based.

The Objective of the project is to design a smart glove for sign language translation that helps

an easy way of communication for speech impaired or hearing-impaired people.

In this project, glove need to be equipped with sensors such as Flex sensor, Accelerometer,

Touch sensor which sense different sign language gestures. Flex sensors are placed on

fingers which measure the bending of fingers according to a gesture made. An accelerometer

is placed on the palm which measures the location of the hand in X, Y, Z axes. Touch sensors

are placed in between the fingers and measures if there is any contact between the fingers.

The sensed data from sensors is sent to Arduino UNO board for further processing and

transfer data to an android phone via bluetooth module. The data we get will be in the form

of text. This text data is then converted into speech through Google text -speech converter.

vi

LIST OF FIGURES

Figure No Name of the Figure Page No

Fig 2.1 American Sign Language 4

Fig 2.2 Mexican Sign Language 4

Fig 2.3 Chinese Sign Language 5

Fig 2.4 French Sign Language 5

Fig 2.5 Japanese Sign Language 6

Fig 2.6 Arabic Sign Language 6

Fig 2.7 Spanish Sign Language 7

Fig 2.8 Mexican Sign Language 7

Fig 2.9 Ukrainian Sign Language 8

Fig 2.10 Standard Signs 8

Fig 3.1 Flex Sensor 11

Fig 3.2 Flex Sensor Working 11

Fig 3.3 Basic Flex Circuit 13

Fig 3.4 Characteristics of flex sensor 13

Fig 3.5 MPU6050 14

Fig 3.6 MPU6050 Module Pinout 15

Fig 3.7 Accelerometer 16

Fig 3.8 Touch Sensor Pinout 18

Fig 3.9 Circuit of Touch Sensor Interfacing with Arduino 19

Fig 3.10 HC-05 Bluetooth Module 21

Fig 3.11 Arduino Uno 25

Fig 4.1 Arduino Uno Board 34

Fig 4.2 Pins Specifications 35

Fig 4.3 Coding Screen 36

Fig 4.4 Program Flow Chart 40

Fig 4.5 Flow chart of IF statement 47

Fig 4.6 Flow Chart of If-Else 48

Fig 5.1 Autodesk Tinkercad window 54

vii

Fig 5.2 Menu Window 55

Fig 5.3 Sign in Window 55

Fig 5.4 Join window 56

Fig 5.5 Tinkercad Window 56

Fig 5.6 Flex Sensor connection in tinkercad 57

Fig 5.7 Output of Flex Sensor 58

Fig 5.8 Accelerometer Connection 59

Fig 5.9 Output of Accelerometer 60

Fig 5.10 Touch Sensor Simulation in Proteus Software 60

Fig 5.11 yes gesture 61

Fig 5.12 output for yes gesture 61

Fig 5.13 thank you gesture 62

Fig 5.14 output for thank you gesture 62

Fig 5.15 yes gesture 62

Fig 5.16 output for yes gesture
62

viii

LIST OF TABLES

Table No Table Description Page

No

Table 3.1 HC-05 pin description 20

Table 4.1 Arduino boards based on ATMEGA32u4 microcontroller 30

Table 4.2 Arduino boards based on AT91SAM3X8E microcontroller
30

Table 4.3 Arduino boards based on ATMEGA2560 microcontroller 30

Table 4.4 Arduino boards based on ATMEGA328 microcontroller
31

1

CHAPTER 1

INTRODUCTION

In the present world it is very complicated for the deaf & dumb people to talk with the

ordinary people as impaired people lacks the amenities which a normal person should own. It

actually becomes the same problem of two persons which knows two different language, no

one of them knows any common language so its becomes a problem to talk with each other

and so they requires a translator physically which may not be always convenient to arrange

and this same kind of problem occurs in between the Normal Person and the Deaf person or

the Normal Person and the Dumb person.

Although technology has been evolving rapidly in this information age, deaf/mute people

still use sign language as their only way of communication. Using sign language as a

communication tool can be beneficial among those who are familiar with this language, but

the problem remains when communicating with the wider community. Sign Language

Translator is the appropriate solution that enables deaf/mute people to communication

fluently through technology in different languages. As sign language is a formal language

employing a system of hand gesture for communication (by the deaf). Many projects used

glove-based systems for automatic understanding of gestural languages used by the deaf

community [1]. The systems developed in these projects differed in characteristics such as

number of classifiable signs, which could range from a few dozen to several thousand, types

of signs, which could be either static or dynamic, and percentage of signs correctly classified.

The simplest systems were limited to understanding of finger spelling or manual alphabets (a

series of hand and finger static configurations that indicate letters). Takashi and Kishino [2]

and Murakami and Taguchi [3] used a Data Glove for recognition of the Japanese alphabets.

For recognition of the American alphabet, Hernadez-Herbollar used an AcceleGlove [4]. The

more complex systems aimed at understanding sign languages, a series of dynamic hand and

finger configurations that indicate words and grammatical structures. For instance, Kim and

colleagues used a Data Glove for recognition of the Korean language [5], Kadous a Power

Glove for the Australian language [6], Vamplew a CyberGlove for the Australian language

[7], Gao and colleagues a CyberGlove for the Chinese language [8], [9], and Liang and

Ouyoung a Data Glove for the Taiwanese language [10]–[12]. Some systems embedded

2

interfaces for translating sign languages into text or vocal outputs [13]–[15]. For instance, the

Talking Glove used a Cyber Glove and recorded, recognized, and translated American sign

language into text or spoken English [16].

Hand movement data acquisition is used in many engineering applications ranging from the

analysis of gestures to the biomedical sciences. Glove-based systems represent one of the

most important efforts aimed at acquiring hand movement data. While they have been around

for over three decades, they keep attracting the interest of researchers from increasingly

diverse fields. The development of the most popular devices for hand movement acquisition,

glove-based systems, started about 30 years ago and continues to engage a growing number

of researchers. We choose to study the glove systems for sign language understanding.

1.1 PROJECT OBJECTIVE

The Aim of the project is to develop a hand glove equipped with sensors such as Flex sensor,

Accelerometer, Touch sensor which sense different sign language gestures. Flex sensors are

placed on fingers which measure the bending of fingers according to a gesture made. An

accelerometer is placed on the palm which measures the location of the hand in X, Y, Z axes.

Touch sensors are placed in between the fingers and measures if there is any contact between

the fingers. Firstly sensors were simulated to extract the sensed data. Secondly the sensed

data from sensors is sent to Arduino UNO board for further processing and transfer data to

an android phone via bluetooth module. The data will be in the form of text. This text data is

then converted into speech through Google text -speech converter.

1.2 PROJECT OUTLINE

This project report is presented over the four remaining chapters. Chapter 2 describes the

sign languages. Chapter 3 presents the principle of operation of sensors and various

components used in the project. Chapter 4 explains the concepts of Arduino programming.

Chapter 5 presents the simulation results of the various signs simulated using the Arduino

simulator. Finally, conclusions are drawn in chapter 6.

3

CHAPTER 2

SIGN LANGUAGE DESCRIPTION

Sign languages are visual languages that use hand, facial and body movements as a

means of communication. There are over 135 different sign languages all around the

world including American Sign Language (ASL), Australian Sign Language (Auslan) and

British Sign Language (BSL). There are also signed representations of oral languages

such as Signed Exact English (SEE) and mixes such as Pidgin Signed English (PSE).

Sign language is commonly used as the main form of communication for people who are

Deaf or hard of hearing, but sign languages also have a lot to offer for everyone. Sign

languages are an extremely important communication tool for many deaf and hard-of-

hearing people. Sign languages are the native languages of the Deaf community and

provide full access to communication. Although sign languages are used primarily by

people who are deaf, they are also used by others, such as people who can hear but can’t

speak. People who know a sign language are often much better listeners. When using a

sign language, a person must engage in constant eye contact with the person who is

speaking. Unlike spoken language, with sign languages a person cannot look away from

the person speaking and continue to listen. This can be an extremely beneficial habit to

have for spoken language as well as sign language. By maintaining eye contact in spoken

language, it shows that a person is genuinely interested in what the other is saying.

2.1 Different Sign Languages

American Sign Language (ASL):

Although ASL has the same alphabet as English, ASL is not a subset of the English

language. American Sign Language was created independently and it has its own linguistic

structure. (It is, in fact, descended from Old French Sign Language.) Signs are also not

expressed in the same order as words are in English. This is due to the unique grammar and

visual nature of the sign language. ASL is used by roughly half a million people in the world

and it is shown in Fig.2.1

4

Fig 2.1 : American Sign Language

British, Australian and New Zealand Sign Language (BANZSL):

Sharing a sign language alphabet is British Sign Language, Australian Sign Language

(Auslan) and New Zealand Sign Language. Unlike ASL, these alphabets use two hands,

instead of one and it is shown in fig.2.2

Fig 2.2 : Mexican Sign Language

Chinese Sign Language (CSL):

CSL’s signs are visual representations of written Chinese characters, they use a one handed

alphabet as shown in fig.2.3. There are many CSL dialects but the Shanghai dialect is the

most common. The language has been developing since the late 1950’s and The Chinese

National Association of the Deaf, is working hard to raise awareness and promote use of the

language throughout the country.

https://www.youtube.com/watch?v=Y8I_CHwoCyE
https://www.youtube.com/watch?v=Y8I_CHwoCyE

5

Fig 2.3 Chinese Sign Language

French Sign Language (LSF):

French Sign Language is similar to ASL – since it is in fact the origin of ASL – but there are

minor differences throughout. LSF also has a pretty fascinating history. LSF is shown in

fig.2.4

Fig 2.4 French Sign Language

Japanese Sign Language (JSL) Syllabary:

The Japanese Sign Language (JSL) Syllabary is based on the Japanese alphabet, which is

made up of phonetic syllables. JSL is known as Nihon Shuwa in Japan and as shown in

fig.2.5

https://www.eazylang.com/blog/index.php/en/2018/03/16/the-history-of-sign-language-in-european-culture/
http://www.wikiwand.com/en/Japanese_manual_syllabary

6

Fig 2.5 Japanese Sign Language

Arabic Sign Language:

The Arab sign-language family is a family of sign languages across the Arab Mideast. Data

on these languages is somewhat scarce, but a few languages have been distinguished,

including Levantine Arabic Sign Language. Arabic sign language is shown in fig.2.6

Fig 2.6 Arabic Sign Language

Spanish Sign Language (LSE):

Spanish Sign Language is officially recognized by the Spanish Government. It is native to

Spain, except Catalonia and Valencia. Many countries that speak Spanish do not use Spanish

Sign Language! (See Mexican Sign Language below, for example.) SSL is mainly used in

Spain and there is an estimated 100,000 signers of SSL. SSL is completely different from

ASL, in the same way that English is different from Spanish. SSL is used across all of Spain,

https://www.youtube.com/watch?v=FMsZCzEVzS4

7

except in Catalonia which uses Catalan Sign Language and Valencia which uses Valencian

Sign Language. LSE is shown in fig.2.7

Fig 2.7 Spanish Sign Language

Mexican Sign Language (LSM):

Mexican Sign Language (‘lengua de señas mexicana’ or LSM) is different from Spanish,

using different verbs and word order. The majority of people who use Mexican Sign

Language reside in Mexico City, Guadalajara and Monterrey. Variation in this language is

high between age groups and religious backgrounds. LSM is shown in fig.2.8

Fig 2.8 Mexican Sign Language

Ukrainian Sign Language (USL):

Ukrainian Sign Language is derived from the broad family of French Sign Languages. It uses

a one-handed manual alphabet of 33 signs, which make use of the 23 handshapes of USL and

is shown in fig.2.9

8

Fig 2.9 Ukrainian Sign Language

2.2 STANDARD SIGNS

There is no universal sign language. Different sign languages are used in different countries

or regions. For example, British Sign Language (BSL) is a different language from ASL, and

Americans who know ASL may not understand BSL. Some countries adopt features of ASL

in their sign languages.

Fig 2.10 Standard Signs

It’s not always practical to spell out words for everyday interactions. That’s where these

expressions come in handy! And are as shown in fig.2.10. We can use common expressions

9

to meet people, show your appreciation, and communicate with friends. It becomes easy for

impaired persons to communicate with normal persons.

2.3 ADVANTAGES

1. It reduces frustration.

2. It increases self esteem.

3. It enhances languages and listening skills.

4. It enriches relationships.

5. It provides a window into your child’s world.

6. It increases their IQ.

10

CHAPTER 3

SENSORS AND COMPONENTS
The proposed system consists of primarily two sections: 1. Transmitter Section 2.

Receiver Section. The devices contained in the transmitter section are:

1. Flex sensors

2. Accelerometer Sensor (MPU6050)

3. Touch Sensor

4. HC-05 Bluetooth Module

5. Arduino Uno Microcontroller.

The gloves contain flex sensors which are the main sensors for this product. They are

devices which can show variable resistance based on various bend angles. The sensors

are connected in a voltage divider circuit such that the resultant analog voltage is sent to

one analog port of the micro-controller. The glove is mounted with 4 flex sensors, each

on one finger of the glove except the thumb finger.

3.1 FLEX SENSORS

A flex sensor or bend sensor is a low-cost and easy-to-use sensor specifically designed to

measure the amount of deflection or bending. It became popular in the 90s due to its use in

the Nintendo Power Glove as a gaming interface. Since then people have been using it as a

goniometer to determine joint movement, a door sensor, a bumper switch for wall detection

or a pressure sensor on robotic grippers.

3.1.1 Flex Sensor overview

A flex sensor is basically a variable resistor that varies in resistance upon bending. Since the

resistance is directly proportional to the amount of bending, it is often called a Flexible

Potentiometer. Flex sensors are generally available in two sizes: one is 2.2″ (5.588cm) long

and another is 4.5″ (11.43cm) long. A flex sensor consists of a phenolic resin substrate with

conductive ink deposited and is shown in fig.3.1. A segmented conductor is placed on top to

form a flexible potentiometer in which resistance changes upon deflection. Flex sensors are

designed to flex in only one direction – away from ink. Bending the sensor in another

direction may damage it. Also take care not to bend the sensor close to the base, because the

11

bottom of the sensor (where the pins are crimped on) is very fragile and can break when bent

over.

Fig 3.1 Flex Sensor

3.1.2 Flex Sensor Working

The conductive ink printed on the sensor acts as a resistor. When the sensor is straight, this

resistance is about 25k as shown in fig.3.2

Fig 3.2 Flex Sensor working

12

When the sensor is bent, conductive layer is stretched, resulting in reduced cross section

(imagine stretching a rubber band). This reduced cross section results in an increased

resistance. At 90° angle, this resistance is about 100KΩ. When the sensor is straightened

again, the resistance returns to its original value. By measuring the resistance, you can

determine how much the sensor is bent.

3.1.3 Reading a Flex Sensor

The easiest way to read the flex sensor is to connect it with a fixed value resistor (usually

47kΩ) to create a voltage divider. To do this you connect one end of the sensor to Power and

the other to a pull-down resistor as shown below. Then the point between the fixed value

pull-down resistor and the flex sensor is connected to the ADC input of an Arduino. This

way you can create a variable voltage output, which can be read by Arduino’s ADC input.

Note that the output voltage you measure is the voltage drop across the pull-down resistor,

not across the flex sensor. In the shown configuration, the output voltage decreases with

increasing bend radius. The output of the voltage divider configuration is described by the

equation 𝑉0 = 𝑉𝐶𝐶
𝑅

𝑅+𝑅𝐹𝑙𝑒𝑥

13

3.1.4 Basic Flex circuit and Characteristics

Figure 3.3 shows circuit of basic flex sensor which consist of two or three sensors which are

connected. The outputs from the flex sensors are given as inputs to op-amp and used a

noninverted style setup to amplify their voltage. The greater the degree of bending the lower

the output voltage. By voltage divider rule, output voltage is determined and given by

𝑉0𝑢𝑡 = 𝑉𝑖𝑛

𝑅1

𝑅1 + 𝑅2

where R1 is the other input resistor to the non-inverting terminal and the characteristics are

shown in fig.3.4

Fig 3.3 Basic Flex Circuit

Fig 3.4 Characteristics of flex sensor

14

3.2 ACCELEROMETER SENSOR: (MPU6050)

In recent years, some crafty engineers successfully made micromachined gyroscopes. These

MEMS (microelectromechanical system) gyroscopes have paved the way to a completely

new set of innovative applications such as gesture recognition, enhanced gaming, augmented

reality, panoramic photo capture, vehicle navigation, fitness monitoring and many more, no

doubt the gyroscope and accelerometer are great in their own way. But when we combine

them, we can get very accurate information about the orientation of an object. This is where

the MPU6050 comes in. The MPU6050 has both a gyroscope and an accelerometer, using

which we can measure rotation along all three axes, static acceleration due to gravity, as well

as motion, shock, or dynamic acceleration due to vibration.

3.2.1 MPU6050 Module Hardware Overview

At the heart of the module is a low power, inexpensive 6-axis Motion Tracking chip that

combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor (DMP)

all in a small 4mm x 4mm package as shown in fig.3.5. It can measure angular momentum or

rotation along all the three axes, the static acceleration due to gravity, as well as dynamic

acceleration resulting from motion, shock, or vibration.

Fig 3.5 MPU6050

The module comes with an on-board LD3985 3.3V regulator, so you can use it with a 5V

logic microcontroller like Arduino without worry. The MPU6050 consumes less than 3.6mA

during measurements and only 5μA during idle. This low power consumption allows the

15

implementation in battery driven devices. In addition, the module has a power LED that

lights up when the module is powered.

3.2.2 MPU6050 Module Pinout

The pin diagram of the module is as shown in fig.3.6 below

Fig 3.6 MPU6050 Module Pinout

VCC is the power supply for the module. Connect it to the 5V output of the Arduino.

GND should be connected to the ground of Arduino.

SCL is a I2C Clock pin. This is a timing signal supplied by the Bus Master device. Connect

to the SCL pin on the Arduino.

SDA is a I2C Data pin. This line is used for both transmit and receive. Connect to the SDA

pin on the Arduino.

XDA is the external I2C data line. The external I2C bus is for connecting external sensors.

XCL is the external I2C clock line.

AD0 allows you to change the internal I2C address of the MPU6050 module. It can be used

if the module is conflicting with another I2C device, or if you wish to use two MPU6050s on

the same I2C bus. When you leave the ADO pin unconnected, the default I2C address is

0x68HEX and when you connect it to 3.3V, the I2C address becomes 0x69HEX.

INT is the Interrupt Output. MPU6050 can be programmed to raise interrupt on gesture

detection, panning, zooming, scrolling, tap detection, and shake detection.

16

3.2.3 The I2C Interface

The module uses the I2C interface for communication with the Arduino. It supports two

separate I2C addresses: 0x68HEX and 0x69HEX. This allows two MPU6050s to be used on the

same bus or to avoid address conflicts with another device on the bus.

The ADO pin determines the I2C address of the module. This pin has a built-in 4.7K pull-

down resistor. Therefore, when you leave the ADO pin unconnected, the default I2C address

is 0x68HEX and when you connect it to 3.3V, the line is pulled HIGH and the I2C address

becomes 0x69HEX.

MPU6050 module doesn’t only provide the measurement of acceleration but it is also useful

in measurement of Rotation i.e. as a gyroscope and also it can measure the temperature.

3.2.4 Measuring Acceleration

The MPU6050 can measure acceleration using its on-chip accelerometer with four

programmable full-scale ranges of ±2g, ±4g, ±8g and ±16g.

The MPU6050 has three 16-bit analog-to-digital converters that simultaneously sample the 3

axes of movement (along X, Y and Z axis) as shown in fig.3.7

Fig 3.7 Accelerometer

3.2.5 Measuring Rotation

The MPU6050 can measure angular rotation using its on-chip gyroscope with four

programmable full-scale ranges of ±250°/s, ±500°/s, ±1000°/s and ±2000°/s.

17

The MPU6050 has another three 16-bit analog-to-digital converters that simultaneously

samples 3 axes of rotation (around X, Y and Z axis). The sampling rate can be adjusted from

3.9 to 8000 samples per second.

3.2.6 Measuring Temperature

The MPU6050 includes an embedded temperature sensor that can measure temperature over

the range of -40 to 85°C with accuracy of ±1°C.

Note that this temperature measurement is of the silicon die itself and not the ambient

temperature. Such measurements are commonly used to offset the calibration of

accelerometer and gyroscope or to detect temperature changes rather than measuring absolute

temperatures.

3.3 TOUCH SENSOR

The human body has five sense elements which are used to interact with our surroundings.

Machines also need some sensing elements to interact with their surroundings. To make this

possible sensor was invented. The invention of the first manmade sensor, thermostat, dates

back to 1883. In 1940s infrared sensors were introduced. Today we have sensors that can

sense motion, light, humidity, temperature, smoke, etc. Analog and digital both types of

sensors are available today. Sensors have brought a revolutionary change in the size and cost

of various control systems. One of such sensors which can detect touch is the Touch sensor.

Touch Sensors are the electronic sensors that can detect touch. They operate as a switch

when touched. These sensors are used in lamps, touch screens of the mobile, etc. Touch

sensors offer an intuitive user interface.

Touch sensors are also known as Tactile sensors. These are simple to design, low cost and

are produced in large scale. With the advance in technology, these sensors are rapidly

replacing the mechanical switches. Based on their functions there are two types of touch

sensors- Capacitive sensor and Resistive sensor.

Capacitive sensors work by measuring capacitance and are seen in portable devices. These

are durable, robust and attractive with low cost. Resistive sensors don’t depend on any

18

electrical properties for operation. These sensors work by measuring the pressure applied to

their surface.

3.3.1 Touch Sensor Pinout

The touch sensor pinout is shown in fig.3.8 below.

Fig 3.8 Touch Sensor Pinout

Touch sensor has 3 pins:

1. GND pin needs to be connected to GND (0V)

2. VCC pin needs to be connected to VCC (5V or 3.3v)

3. SIGNAL pin is an output pin: LOW when it is NOT touched, HIGH when it is touched.

3.3.2 Working Principle of Touch Sensor

Touch sensors work similar to a switch. When they are subjected to touch, pressure or force

they get activated and acts as a closed switch. When the pressure or contact is removed, they

act as an open switch. Capacitive touch sensor contains two parallel conductors with an

insulator between them. These conductor plates act as a capacitor with a capacitance value

C0. When these conductor plates come in contact with our fingers, our finger acts as a

conductive object. Due to this, there will be an uncertain increase in the capacitance. A

capacitance measuring circuit continuously measures the capacitance C0 of the sensor. When

this circuit detects a change in capacitance it generates a signal. The resistive touch sensors

calculate the pressure applied on the surface to sense the touch. These sensors contain two

conductive films coated with indium tin oxide, which is a good conductor of electricity,

separated by a very small distance. Across the surface of the films, a constant voltage is

applied. When pressure is applied to the top film, it touches the bottom film. This generates a

https://www.elprocus.com/capacitors-types-applications/

19

voltage drop which is detected by a controller circuit and signal is generated thereby

detecting the touch.

3.3.3 Circuit of Touch Sensor Interfacing with Arduino

Fig 3.9 Circuit of Touch Sensor Interfacing with Arduino

Capacitor sensors are easily available and are of very low cost. These sensors are highly used

in mobile phones, iPods, automotive, small home appliances, etc. These are also used for

measuring pressure, distance, etc. A drawback of these sensors is that they can give a false

alarm. Resistive touch sensors only work when sufficient pressure is applied. Hence, these

sensors are not useful for detecting small contact or pressure. These are used in applications

such as musical instruments, keypads, touch-pads, etc. where a large amount of pressure is

applied.

3.4 HC-05 BLUETOOTH MODULE

HC-05 Bluetooth Module is an easy to use Bluetooth SPP (Serial Port Protocol) module,

designed for transparent wireless serial connection setup. Its communication is via serial

communication which makes an easy way to interface with controller or PC. HC-05

Bluetooth module provides switching mode between master and slave mode which means it

able to use neither receiving nor transmitting data.

https://en.wikipedia.org/wiki/Keypad

20

Table 3.1 : HC-05 pin description

1 Enable /

Key

This pin is used to toggle between Data Mode (set low) and AT command mode

(set high). By default it is in Data mode

2 Vcc Powers the module. Connect to +5V Supply voltage

3 Ground Ground pin of module, connect to system ground.

4 TXD–

Transmitter

Transmits Serial Data. Everything received via Bluetooth will be given out by this

pin as serial data.

5 RXD–

Receiver

Receive Serial Data. Every serial data given to this pin will be broadcasted via

Bluetooth

6 State The state pin is connected to on board LED, it can be used as a feedback to check if

Bluetooth is working properly.

7 LED Indicates the status of Module

• Blink once in 2 sec: Module has entered Command Mode

• Repeated Blinking: Waiting for connection in Data Mode

• Blink twice in 1 sec: Connection successful in Data Mode

8 Button Used to control the Key/Enable pin to toggle between Data and command Mode

21

3.4.1 HC-05 BLUETOOTH MODULE PINOUT

Fig 3.10 HC-05 BLUETOOTH MODULE

3.4.2 HC-05 Technical Specifications

• Serial Bluetooth module for Arduino and other microcontrollers

• Operating Voltage: 4V to 6V (Typically +5V)

• Operating Current: 30mA

• Range: <100m

• Works with Serial communication (USART) and TTL compatible

• Follows IEEE 802.15.1 standardized protocol

• Uses Frequency-Hopping Spread spectrum (FHSS)

• Can operate in Master, Slave or Master/Slave mode

• Can be easily interfaced with Laptop or Mobile phones with Bluetooth

• Supported baud rate: 9600,19200,38400,57600,115200,230400,460800.

https://components101.com/microcontrollers/arduino-uno

22

3.4.3 HC-05 Default Settings

• Default Bluetooth Name: “HC-05”

• Default Password: 1234 or 0000

• Default Communication: Slave

• Default Mode: Data Mode

• Data Mode Baud Rate: 9600, 8, N, 1

• Command Mode Baud Rate: 38400, 8, N, 1

• Default firmware: LINVO

3.4.4 Where to use HC-05 Bluetooth module

The HC-05 is a very cool module which can add two-way (full-duplex) wireless

functionality to your projects. You can use this module to communicate between two

microcontrollers like Arduino or communicate with any device with Bluetooth functionality

like a Phone or Laptop. There are many android applications that are already available which

makes this process a lot easier. The module communicates with the help of USART at 9600

baud rates hence it is easy to interface with any microcontroller that supports USART. We

can also configure the default values of the module by using the command mode. So, if you

looking for a Wireless module that could transfer data from your computer or mobile phone

to microcontroller or vice versa then this module might be the right choice for you. However,

do not expect this module to transfer multimedia like photos or songs; you might have to

look into the CSR8645 module for that.

3.4.5 How to Use the HC-05 Bluetooth module

The HC-05 has two operating modes, one is the Data mode in which it can send and receive

data from other Bluetooth devices and the other is the AT Command mode where the default

device settings can be changed. We can operate the device in either of these two modes by

using the key pin as explained in the pin description.

23

It is very easy to pair the HC-05 module with microcontrollers because it operates using the

Serial Port Protocol (SPP). Simply power the module with +5V and connect the Rx pin of the

module to the Tx of MCU and Tx pin of module to Rx of MCU as shown in the Figure below

During power up the key pin can be grounded to enter into Command mode, if left free it will

by default enter into the data mode. As soon as the module is powered you should be able to

discover the Bluetooth device as “HC-05” then connect with it using the default password

1234 and start communicating with it.

3.5 ARDUINO UNO

The Arduino Uno is an open-source microcontroller board based on the Microchip

ATmega328P microcontroller and developed by Arduino.cc. The board is equipped with sets

of digital and analog input/output (I/O) pins that may be interfaced to various expansion

boards (shields) and other circuits. The board has 14 digital I/O pins (six capable of PWM

output), 6 analog I/O pins, and is programmable with the Arduino IDE (Integrated

Development Environment), via a type B USB cable. It can be powered by the USB cable or

by an external 9-volt battery, though it accepts voltages between 7 and 20 volts. It is similar

to the Arduino Nano and Leonardo. The hardware reference design is distributed under a

Creative Commons Attribution Share-Alike 2.5 license and is available on the Arduino

website. Layout and production files for some versions of the hardware are also available.

The word "uno" means "one" in Italian and was chosen to mark the initial release of Arduino

Software. The Uno board is the first in a series of USB-based Arduino boards; it and version

1.0 of the Arduino IDE were the reference versions of Arduino, which have now evolved to

24

newer releases. The ATmega328 on the board comes preprogrammed with a bootloader that

allows uploading new code to it without the use of an external hardware programmer. While

the Uno communicates using the original STK500 protocol, it differs from all preceding

boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it uses the

Atmega16U2 (Atmega8U2 up to version R2) programmed as a USB-to-serial converter.

3.5.1 History

The Arduino project started at the Interaction Design Institute Ivrea (IDII) in Ivrea, Italy. At

that time, the students used a BASIC Stamp microcontroller, at a cost that was a considerable

expense for many students. In 2003, Hernando Barragan created the development platform

Wiring as a Master's thesis project at IDII, under the supervision of Massimo Benzie and

Casey Rees, who are known for work on the Processing language. The project goal was to

create simple, low-cost tools for creating digital projects by non-engineers. The Wiring

platform consisted of a printed circuit board (PCB) with an ATmega168 microcontroller, an

IDE based on Processing, and library functions to easily program the microcontroller. In

2003, Massimo Benzie, with David Mallis, another IDII student, and David Cuartilla’s,

added support for the cheaper ATmega8 microcontroller to Wiring. But instead of continuing

the work on Wiring, they forked the project and renamed it Arduino. Early Arduino boards

used the FTDI USB-to-serial driver chip and an ATmega168. The Uno differed from all

preceding boards by featuring the ATmega328P microcontroller and an ATmega16U2

(Atmega8U2 up to version R2) programmed as a USB-to-serial converter.

25

3.5.2 ARDUINO UNO PINOUT:

Fig 3.11 ARDUINO UNO

General pin functions

• LED: There is a built-in LED driven by digital pin 13. When the pin is high value, the

LED is on, when the pin is low, it is off.

• VIN: The input voltage to the Arduino/Genuino board when it is using an external power

source (as opposed to 5 volts from the USB connection or other regulated power source).

You can supply voltage through this pin, or, if supplying voltage via the power jack,

access it through this pin.

• 5V: This pin outputs a regulated 5V from the regulator on the board. The board can be

supplied with power either from the DC power jack (7 - 20V), the USB connector (5V),

or the VIN pin of the board (7-20V). Supplying voltage via the 5V or 3.3V pins bypasses

the regulator, and can damage the board.

• 3V3: A 3.3-volt supply generated by the on-board regulator. Maximum current draw is

50 mA.

• GND: Ground pins.

• IOREF: This pin on the Arduino/Genuino board provides the voltage reference with

which the microcontroller operates. A properly conFigured shield can read the IOREF

26

pin voltage and select the appropriate power source, or enable voltage translators on the

outputs to work with the 5V or 3.3V.

• RESET: Typically used to add a reset button to shields that block the one on the board.

Special pin functions

Each of the 14 digital pins and 6 analog pins on the Uno can be used as an input or output,

under software control (using pinMode (), digitalWrite (), and digitalRead () functions). They

operate at 5 volts. Each pin can provide or receive 20 mA as the recommended operating

condition and has an internal pull-up resistor (disconnected by default) of 20-50K ohm. A

maximum of 40mA must not be exceeded on any I/O pin to avoid permanent damage to the

microcontroller. The Uno has 6 analog inputs, labeled A0 through A5; each provides 10 bits

of resolution (i.e. 1024 different values). By default, they measure from ground to 5 volts,

though it is possible to change the upper end of the range using the AREF pin and the

analogReference () function.

• Serial / UART: pins 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL

serial data. These pins are connected to the corresponding pins of the ATmega8U2 USB-

to-TTL serial chip.

• External interrupts: pins 2 and 3. These pins can be configured to trigger an interrupt

on a low value, a rising or falling edge, or a change in value.

• PWM (pulse-width modulation): pins 3, 5, 6, 9, 10, and 11. Can provide 8-bit PWM

output with the analogWrite () function.

• SPI (Serial Peripheral Interface): pins 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK).

These pins support SPI communication using the SPI library.

• TWI (two-wire interface) / I²C: pin SDA (A4) and pin SCL (A5). Support TWI

communication using the Wire library.

• AREF (analog reference): Reference voltage for the analog inputs.

https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/I%C2%B2C

27

3.5.3 Technical specifications

• Microcontroller: Microchip ATmega328P

• Operating Voltage: 5 Volts

• Input Voltage: 7 to 20 Volts

• Digital I/O Pins: 14 (of which 6 can provide PWM output)

• UART: 1

• I2C: 1

• SPPI: 1

• Analog Input Pins: 6

• DC Current per I/O Pin: 20 mA

• DC Current for 3.3V Pin: 50 mA

• Flash Memory: 32 KB of which 0.5 KB used by bootloader

• SRAM: 2 KB

• EEPROM: 1 KB

• Clock Speed: 16 MHz

• Length: 68.6 mm

• Width: 53.4 mm

• Weight: 25 g

3.5.4 Communication

The Arduino/Genuino Uno has a number of facilities for communicating with a computer,

another Arduino/Genuino board, or other microcontrollers. The ATmega328 provides UART

TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An

ATmega16U2 on the board channels this serial communication over USB and appears as a

virtual com port to software on the computer. The 16U2 firmware uses the standard USB

COM drivers, and no external driver is needed. However, on Windows, a .inf file is required.

Arduino Software (IDE) includes a serial monitor which allows simple textual data to be sent

https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/ATmega328P
https://en.wikipedia.org/wiki/Flash_Memory
https://en.wikipedia.org/wiki/Booting#BOOT-LOADER
https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/EEPROM

28

to and from the board. The RX and TX LEDs on the board will flash when data is being

transmitted via the USB-to-serial chip and USB connection to the computer (but not for serial

communication on pins 0 and 1). A SoftwareSerial library allows serial communication on

any of the Uno's digital pins.

3.5.5 Applications of Arduino Uno ATmega328

The applications of Arduino Uno include the following:

• Arduino Uno is used in Do-it-Yourself projects prototyping.

• In developing projects based on code-based control

• Development of Automation System

• Designing of basic circuit designs.

Thus, this is all about Arduino Uno datasheet. We can conclude that this is an 8-bit

ATmega328P microcontroller. It has different components like serial

communication, crystal oscillator, the voltage regulator for supporting the microcontroller.

This board includes a USB connection, digital I/O pins-14, analog i/p pins-6, a power-barrel

jack, a reset button, and an ICSP header.

https://en.wikipedia.org/wiki/Arduino_Uno
https://www.elprocus.com/crystal-oscillator-circuit-and-working/
https://www.elprocus.com/arm7-based-lpc2148-microcontroller-pin-configuration/

29

CHAPTER 4

ARDUINO PROGRAMMING

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and

software. It consists of a circuit board, which can be programed (referred to as a

microcontroller) and a ready-made software called Arduino IDE (Integrated Development

Environment), which is used to write and upload the computer code to the physical board.

Arduino provides a standard form factor that breaks the functions of the micro-controller into

a more accessible package.

The key features are:

• Arduino boards are able to read analog or digital input signals from different sensors

and turn it into an output such as activating a motor, turning LED on/off, connect to

the cloud and many other actions.

• You can control your board functions by sending a set of instructions to the

microcontroller on the board via Arduino IDE (referred to as uploading software).

• Unlike most previous programmable circuit boards, Arduino does not need an extra

piece of hardware (called a programmer) in order to load a new code onto the board.

You can simply use a USB cable.

• Additionally, the Arduino IDE uses a simplified version of C++, making it easier to

learn to program.

• Finally, Arduino provides a standard form factor that breaks the functions of the

microcontroller into a more accessible package.

4.1 ARDUINO BOARD TYPES

Various kinds of Arduino boards are available depending on different microcontrollers used.

However, all Arduino boards have one thing in common: they are programed through the

Arduino IDE.

The differences are based on the number of inputs and outputs (the number of sensors, LEDs,

and buttons you can use on a single board), speed, operating voltage, form factor etc. Some

boards are designed to be embedded and have no programming interface (hardware), which

30

you would need to buy separately. Some can run directly from a 3.7V battery, others need at

least 5V. Here is a list of different Arduino boards available.

Table 4.1 Arduino boards based on ATMEGA32u4 microcontroller

Board

name

Operating

voltage

Clock

speed

Digital

i/o

Analog

Inputs

PWM UART Programming

Interface

Arduino

Leonardo

5V 16MHz 20 12 7 1 Native USB

Pro micro

5V/16MHz

5V 16MHz 14 6 6 1 Native USB

Pro micro

5V/16MHz

3.3V 8MHz 14 6 6 1 Native USB

Lilypad

Arduino

USB

5V 16MHz 14 6 6 1 Native USB

Table 4.2 Arduino boards based on AT91SAM3X8E microcontroller

Board

name

Operating

voltage

Clock

speed

Digital

i/o

Analog

Inputs

PWM UART Programming

Interface

Arduino

Due

3.3V 84MHz 54 12 12 4 USB native

Table 4.3 Arduino boards based on ATMEGA2560 microcontroller

Board

name

Operating

voltage

Clock

speed

Digital

i/o

Analog

Inputs

PWM UART Programming

Interface

31

Arduino

Mega

2560

R3

5V 16MHz 54 16 14 4 USB via

ATMega16U2

Mega

Pro

3.3V

3.3V 8MHz 54 16 14 4 FTDI

Compatible

Header

Mega

Pro 5V

5V 16MHz 54 16 14 4 FTDI

Compatible

Header

Mega

Pro

Mini

3.3V

3.3V 8MHz 54 16 14 4 FTDI

Compatible

Header

Table 4.4 Arduino boards based on ATMEGA328 microcontroller

Board

name

Operating

voltage

Clock

speed

Digital

i/o

Analog

Inputs

PWM UART Programming

Interface

Arduino

Uno R3

5V 16MHz 14 6 6 1 USB via

ATMega16U2

Arduino

Uno R3

SMD

5V 16MHz 14 6 6 1 USB via

ATMega16U2

Red

Board

5V 16MHz 14 6 6 1 USB via FTDI

Arduino

Pro

3.3V 8 MHz 14 6 6 1 FTDI

Compatible

32

3.3v/8

MHz

Header

Arduino

Pro 5v/16

MHz

5V 16

MHz

14 6 6 1 FTDI

Compatible

Header

Arduino

mini 05

5V 16

MHz

14 8 6 1 FTDI

Compatible

Header

Arduino

Pro mini

3.3v/8

MHz

3.3V 8 MHz 14 8 6 1 FTDI

Compatible

Header

Arduino

Pro

mini5v/16

MHz

5V 16

MHz

14 8 6 1 FTDI

Compatible

Header

4.2 BOARD DESCRIPTION

1-> Power USB:

ARDUINO – BOARD DESCRIPTION 12 Arduino board can be powered by using the USB

cable from your computer. All you need to do is connect the USB cable to the USB

connection (1).

 2-> Power (Barrel Jack):

Arduino boards can be powered directly from the AC mains power supply by connecting it to

the Barrel Jack (2).

3-> Voltage Regulator:

The function of the voltage regulator is to control the voltage given to the Arduino board and

stabilize the DC voltages used by the processor and other elements.

4-> Crystal Oscillator:

33

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate

time? The answer is, by using the crystal oscillator. The number printed on top of the

Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

5, 17->Arduino Reset:

You can reset your Arduino board, i.e., start your program from the beginning. You can reset

the UNO board in two ways. First, by using the reset button (17) on the board. Second, you

can connect an external reset button to the Arduino pin labelled RESET (5).

6,7,8,9 ->Pins (3.3, 5, GND, Vin) :

3.3V (6): Supply 3.3 output volt

 5V (7): Supply 5 output volt

 Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.

 GND (8)(Ground): There are several GND pins on the Arduino, any of which can be used to

ground your circuit.

Vin (9): This pin also can be used to power the Arduino board from an external power

source, like AC mains power supply.

10-> Analog pins:

The Arduino UNO board has five analog input pins A0 through A5. These pins can read the

signal from an analog sensor like the humidity sensor or temperature sensor and convert it

into a digital value that can be read by the microprocessor.

11->Main microcontroller:

Each Arduino board has its own microcontroller (11). You can assume it as the brain of your

board. The main IC (integrated circuit) on the Arduino is slightly different from board to

board. The microcontrollers are usually of the ATMEL Company. You must know what IC

your board has before loading up a new program from the Arduino IDE. This information is

available on the top of the IC. For more details about the IC construction and functions, you

can refer to the data sheet.

12->ICSP pin:

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of

MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial

34

Peripheral Interface), which could be considered as an "expansion" of the output. Actually,

you are slaving the output device to the master of the SPI bus.

Fig 4.1 Arduino Uno Board

13->Power LED indicator:

This LED should light up when you plug your Arduino into a power source to indicate that

your board is powered up correctly. If this light does not turn on, then there is something

wrong with the connection.

14->TX and RX LEDs:

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in two

places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins

responsible for serial communication. Second, the TX and RX led (13). The TX led flashes

with different speed while sending the serial data. The speed of flashing depends on the baud

rate used by the board. RX flashes during the receiving process.

15->Digital I / O:

The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse Width

Modulation) output. These pins can be conFigured to work as input digital pins to read logic

35

14 values (0 or 1) or as digital output pins to drive different modules like LEDs, relays, etc.

The pins labeled “~” can be used to generate PWM.

16->AREF:

 AREF stands for Analog Reference. It is sometimes, used to set an external reference

voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.

4.3 ARDUINO PINOUT

The Arduino UNO is a standard board of Arduino, which is based on

an ATmega328P microcontroller. It is easier to use than other types of Arduino Boards.

The Arduino UNO Board, with the specification of pins, is shown below:

Fig 4.2 Pins Specifications

36

4.4 PROGRAMMING

4.4.1: BASICS

Coding Screen:

The coding screen is divided into two blocks. The ‘setup’ is considered as the preparation

block, while the ‘loop’ is considered as the execution block. It is shown below:

Fig 4.3 Coding Screen

The set of statements in the setup and loop blocks are enclosed with the curly brackets. We

can write multiple statements depending on the coding requirements for a particular project.

Set Up (): It contains an initial part of the code to be executed. The pin modes, libraries,

variables, etc., are initialized in the setup section. It is executed only once during the

uploading of the program and after reset or power up of the Arduino board.Zero setup ()

resides at the top of each sketch. As soon as the program starts running, the code inside the

curly bracket is executed in the setup and it executes only once.

37

Loop (): The loop contains statements that are executed repeatedly. The section of code

inside the curly brackets is repeated depending on the value of variables.

Pin Mode ():

The specific pin number is set as the INPUT or OUTPUT in the pinMode () function.

The Syntax is: pinMode (pin, mode)

Where,

pin: It is the pin number. We can select the pin number according to the requirements.

Mode: We can set the mode as INPUT or OUTPUT according to the corresponding pin

number.

The OUTPUT mode of a specific pin number provides a considerable amount of current to

other circuits, which is enough to run a sensor or to light the LED brightly. The output state

of a pin is considered as the low-impedance state.

The high current and short circuit of a pin can damage the ATmel chip. So, it is

recommended to set the mode as OUTPUT.

Digital Write ():

The digitalWrite () function is used to set the value of a pin as HIGH or LOW.

HIGH: It sets the value of the voltage. For the 5V board, it will set the value of 5V, while for

3.3V, it will set the value of 3.3V.

LOW: It sets the value = 0 (GND).

If we do not set the pinMode as OUTPUT, the LED may light dim.

The syntax is: digitalWrite(pin, value HIGH/LOW)

The digitalRead () function will read the HIGH/LOW value from the digital pin, and the

digitalWrite () function is used to set the HIGH/LOW value of the digital pin.

pin: We can specify the pin number or the declared variable.

Delay ():

The delay () function is a blocking function to pause a program from doing a task during the

specified duration in milliseconds.

For example, - delay (2000)

Where, 1 sec = 1000millisecond

https://www.javatpoint.com/led-full-form

38

Hence, it will provide a delay of 2 seconds.

4.4.2 Syntax and Programme Flow

Syntax:

Syntax in Arduino signifies the rules need to be followed for the successful uploading of the

Arduino program to the board. The syntax of Arduino is similar to the grammar in English. It

means that the rules must be followed in order to compile and run our code successfully. If

we break those rules, our computer program may compile and run, but with some bugs.

Functions:

• The functions in Arduino combine many pieces of lines of code into one.

• The functions usually return a value after finishing execution. But here, the function

does not return any value due to the presence of void.

• The setup and loop function have void keyword present in front of their function

name.

• The multiple lines of code that a function encapsulates are written inside curly

brackets.

• Every closing curly bracket ' } ' must match the opening curly bracket '{ ' in the code.

• We can also write our own functions, which will be discussed later in this tutorial.

Spaces:

• Arduino ignores the white spaces and tabs before the coding statements.

• The coding statements in the code are intent (empty spacing at the starting) for the

easy reading.

• In the function definition, loop, and conditional statements, 1 intent = 2 spaces.

• The compiler of Arduino also ignores the spaces in the parentheses, commas, blank

lines, etc.

Tools Tab:

• The verify icon present on the tool tab only compiles the code. It is a quick method to

check that whether the syntax of our program is correct or not.

• To compile, run, and upload the code to the board, we need to click on the Upload

button.

39

Uses of Paranthesis ():

• It denotes the function like void setup () and void loop ().

• The parameter's inputs to the function are enclosed within the parentheses.

• It is also used to change the order of operations in mathematical operations.

 SemiColon ;

• It is the statement terminator in the C as well as C++.

• A statement is a command given to the Arduino, which instructs it to take some kind

of action. Hence, the terminator is essential to signify the end of a statement.

• We can write one or more statements in a single line, but with semicolon indicating

the end of each statement.

• The compiler will indicate an error if a semicolon is absent in any of the statements.

• It is recommended to write each statement with semicolon in a different line, which

makes the code easier to read.

• We are not required to place a semicolon after the curly braces of the setup and loop

function.

Arduino processes each statement sequentially. It executes one statement at a time before

moving to the next statement.

Program Flow:

The program flow in Arduino is similar to the flowcharts. It represents the execution of a

program in order.

40

The Arduino coding process in the form of the flowchart is shown below:

Fig 4.4 Program Flow Chart

4.4.3 Serial Functions

Serial.begin():

The serial.begin() sets the baud rate for serial data communication. The baud rate signifies

the data rate in bits per second.

The default baud rate in Arduino is 9600 bps (bits per second). We can specify other baud

rates as well, such as 4800, 14400, 38400, 28800, etc.

The Serial.begin() is declared in two formats, which are shown below:

• begin(speed)

• begin(speed, conFig)

Where,

41

serial: It signifies the serial port object.

speed: It signifies the baud rate or bps (bits per second) rate. It allows long data types.

conFig: It sets the stop, parity, and data bits.

Serial.print:

The serial.print () in Arduino prints the data to the serial port. The printed data is stored in

the ASCII (American Standard Code for Information Interchange) format, which is a human-

readable text.

Each digit of a number is printed using the ASCII characters.

The printed data will be visible in the serial monitor, which is present on the right corner on

the toolbar.

The Serial.print() is declared in two formats, which are shown below:

• print(value)

• print(value, format)

serial: It signifies the serial port object.

print: The print () returns the specified number of bytes written.

value: It signifies the value to print, which includes any data type value.

format: It consists of number base, such as OCT (Octal), BIN (Binary), HEX

(Hexadecimal), etc. for the integral data types. It also specifies the number of decimal places.

42

4.4.4 analogRead():

The analogRead() function reads the value from the specified analog pin present on the

particular Arduino board. The ADC (Analog to Digital Converter) on the Arduino board is a

multichannel converter. It maps the input voltage and the operating voltage between the

values 0 and 1023. The operating voltage can be 5V or 3.3V. The values from 0 to 1023 are

the integer values. It can also be written as 0 to (2^10) -1. The time duration to read an

analog input signal on the boards (UNO, Mega, Mini, and Nano) is about 100 microseconds

or 0.0001 seconds. Hence, the maximum reading rate of analog input is about 10000 times

per second.

Let's discuss operating voltage and resolution of some Arduino boards.

• The Operating voltage of Arduino UNO, Mini, Mega, Nano, Leonardo, and Micro

is 5V, and resolution is 10 bits.

• The Operating voltage of MKR family boards, Arduino Due, and Zero is 3 V, and

resolution is 12 bits.

4.4.5 Arduino Data Types

The data types are used to identify the types of data and the associated functions for handling

the data. It is used for declaring functions and variables, which determines the bit pattern and

the storage space. The data types that we will use in the Arduino are listed below:

• void Data Type

• int Data Type

• Char Data Type

• Float Data Type

• Double Data Type

• Unsigned int Data Type

https://www.javatpoint.com/arduino
https://www.javatpoint.com/arduino-boards

43

• short Data Type

• long Data Type

• Unsigned long Data Type

• byte data type

• word data type

4.4.6 Arduino Variables

The variables are defined as the place to store the data and values. It consists of a name,

value, and type. The variables can belong to any data type such as int, float, char, etc.

Consider the url -Arduino data types for detailed information.

Ex: int pin=8

Here, the int data type is used to create a variable named pin that stores the value 8. It also

means that value 8 is initialized to the variable pin.

We can modify the name of the variable according to our choice.

4.4.7 Arduino Operators

The operators are widely used in Arduino programming from basics to advanced levels. It

plays a crucial role in every programming concept like C, C++, Java, etc. The operators are

used to solve logical and mathematical problems. For example, to calculate the temperature

given by the sensor based on some analog voltage.

The types of Operators classified in Arduino are:

1. Arithmetic Operators

2. Boolean Operators

3. Comparison Operators

4. Bitwise Operators

https://www.javatpoint.com/arduino-data-types
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial

44

1. Arthematic Operators:

There are six basic operators responsible for performing mathematical operations in Arduino,

which are listed below:

Assignment Operator (=):

The Assignment operator in Arduino is used to set the variable's value. It is quite different

from the equal symbol (=) normally used in mathematics.

Addition (+):

The addition operator is used for the addition of two numbers. For example, P + Q.

Subtraction (-):

Subtraction is used to subtract one value from the another. For example, P - Q.

Multiplication (*):

The multiplication is used to multiply two numbers. For example, P * Q.

Division (/):

The division is used to determine the result of one number divided with another. For

example, P/Q.

Modulo (%):

The Modulo operator is used to calculate the remainder after the division of one number by

another number.

https://www.javatpoint.com/arduino

45

2. Boolean Operators:

The Boolean Operators are NOT (!), Logical AND (& &), and Logical OR (| |).

Let's discuss the above operators in detail.

Logical AND (& &):

The result of the condition is true if both the operands in the condition are true.

Logical OR (| |):

The result of the condition is true, if either of the variables in the condition is true.

NOT (!):

It is used to reverse the logical state of the operand.

3. Comparision Operators:

The comparison operators are used to compare the value of one variable with the other.

The comparison operators are listed below:

less than (<):

The less than operator checks that the value of the left operand is less than the right operand.

The statement is true if the condition is satisfied.

greater than (>):

The less than operator checks that the value of the left side of a statement is greater than the

right side. The statement is true if the condition is satisfied.

equal to (= =):

46

It checks the value of two operands. If the values are equal, the condition is satisfied.

not equal to (! =):

It checks the value of two specified variables. If the values are not equal, the condition will

be correct and satisfied.

less than or equal to (< =):

The less or equal than operator checks that the value of left side of a statement is less or

equal to the value on right side. The statement is true if either of the condition is satisfied.

greater than or equal to (> =):

The greater or equal than operator checks that the value of the left side of a statement is

greater or equal to the value on the right side of that statement. The statement is true if the

condition is satisfied.

4. Bitwise Operators:

The Bitwise operators operate at the binary level. These operators are quite easy to use.

There are various bitwise operators. Some of the popular operators are listed below:

bitwise NOT (~):

The bitwise NOT operator acts as a complement for reversing the bits.

bitwise XOR (^):

The output is 0 if both the inputs are same, and it is 1 if the two input bits are different.

bitwise OR (|):

47

The output is 0 if both of the inputs in the OR operation are 0. Otherwise, the output is 1. The

two input patterns are of 4 bits.

bitwise AND (&):

The output is 1 if both the inputs in the AND operation are 1. Otherwise, the output is 0. The

two input patterns are of 4 bits.

bitwise left shift (< <):

The left operator is shifted by the number of bits defined by the right operator.

bitwise right shift (> >):

The right operator is shifted by the number of bits defined by the left operator.

4.4.8 Arduino IF statement

Fig 4.5 Flow chart of IF statement

1.The if () statement is the conditional statement, which is the basis for all types of

programming languages. If the condition in the code is true, the corresponding task or

48

function is performed accordingly. It returns one value if the condition in a program is true.

It further returns another value if the condition is false. It means that if () statement checks

for the condition and then executes a statement or a set of statements.

2.If-Else:

The if-else condition includes if () statement and else () statement. The condition in the else

statement is executed if the result of the If () statement is false.

Fig 4.6 Flow Chart of If-Else

The statements will be executed one by one until the true statement is found. When the true

statement is found, it will skip all other if and else statements in the code and runs the

associated blocks of code.

49

3.Else-if:

The else if statement can be used with or without the else () statement. We can include

multiple else if statements in a program.

The else if () statement will stop the flow once its execution is true.

4.5 ARDUINO SENSORS

The sensors are defined as a machine, module, or a device that detect changes in the

environment. The sensors transfer those changes to the electronic devices in the form of a

signal. A sensor and electronic devices always work together. The output signal is easily

readable by humans. Nowadays, Sensors are used in daily lives. For example, controlling the

brightness of the lamp by touching its base, etc. The use of sensors is expanding with new

technologies. The sensors are used to measure the physical quantities, such as pressure,

temperature, sound, humidity, and light, etc. An example of sensors is Fire Alarm, a detector

present on the fire alarm detects the smoke or heat. The signal generated from the detector is

sent to the alarming system, which produces an alert in the form of alarm. The types of

detectors are smoke detectors, heat detectors, carbon monoxide detectors, multi-sensors

detectors, etc. The data signal runs from the sensor to the output pins of the Arduino. The

data is further recorded by the Arduino. Some of the types of sensors in Arduino are listed

below:

1. Light sensor

The light sensor is used to control the light. It is used with LDR (Light Dependent Resistor)

in Arduino.

2. Ultrasonic sensor

The ultrasonic sensor is used to determine the distance of the object using SONAR.

50

3. Temperature sensor

The temperature sensor is used to detect the temperature around it.

4. Knock Sensor

The knock sensor is used to pick the vibrations of the knocking. It is a common category of a

vibration sensor.

5. Object Detection Sensor

It is used to detect the object by emitting infrared radiations, which are reflected or bounced

back by that object.

6. Tracking Sensor

It allows the robots to follow a particular path specified by sensing the marking or lines on

the surface.

7. Metal Touch Sensor

It is suitable for detecting the human touch.

8. Water Level Sensor

It is used to measure the water or the depth of the water level. It is also used to detect leaks in

containers.

9. Vibration Sensor

The vibration sensor is used to measure the vibrations.

51

10. Air Pressure sensor

It is commonly related to meteorology, biomedical fields.

11. Pulse Sensor

The pulse sensor is used to measure the pulse rate.

12. Capacitive soil moisture sensor

It is used to measure the moisture level of the soil.

13. Microphone sensor

The microphone sensor in Arduino is used to detect the sound. The analog and digital are the

two outputs of this module. The digital output sends the high signal when the intensity of

sound reaches a certain threshold. We can adjust the sensitivity of a module with the help of

a potentiometer.

14. humidity sensor

The humidity sensor is used to monitor weather conditions.

15. Motion sensor

The motion sensor detects the movement and occupancy from the human body with the help

of Infrared radiation.

16. Vibration sensor

The vibration sensor is used to detect the vibrations.

52

17. Sound sensor

The sound sensor is suitable to detect the sound of the environment.

18. Pressure Sensor

The pressure sensor is used to measure the pressure. The sensor in Arduino measures the

pressure and displays it on the small LCD screen.

19. Magnetic field sensor

The magnetic field sensor measures the magnetic field strength and produces a varying

voltage as the output in Arduino.

53

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 ARDUINO SIMULATOR

The Arduino simulator is a virtual portrayal of the circuits of Arduino in the real world.

We can create many projects using a simulator without the need for any hardware. The

Simulator helps to learn, program, and create their projects without wasting time on

collecting hardware equipment’s.

5.1.1 ADVANTAGES OF USING A SIMULATOR

There are various advantages of using simulator, which are listed below:

• It saves money, because there is no need to buy hardware equipment’s to make a

project.

• The task to create and learn Arduino is easy for beginners.

• We need not to worry about the damage of board and related equipment’s.

• No messy wire structure required.

• It supports line to line debugging, and helps to find out the errors easily.

• Coding can be learned and build projects anywhere with our computer and internet

connection.

• We can also share our design with others.

5.1.2 TYPES OF SIMULATOR

There are various simulators available. Some are available for free, while some require a

license to access the simulators. Some types of simulators are listed below:

• Autodesk Tinkercad

• Emulator Arduino Simulator

• Autodesk Eagle

54

• Proteus Simulator

• Virtronics Arduino Simulator

• ArduinoSim

Autodesk Eagle is an advanced simulator, which is used to design 2D and 3D models of

PCB, modular designs, multi-sheet schematics, real-time synchronization, etc.

5.1.3 ACCESSING SIMULATOR

Here, we are using the Autodesk Tinkercad Simulator.

The steps to access the TINKERCAD are listed below:

1. Open the official website of tinkercad. URL: https://www.tinkercad.com/

A window will appear, as shown below:

Fig. 5.1 AUTODESK TINKERCAD window

2. Click on the three horizontal lines present on the upper right corner.

https://www.javatpoint.com/url-full-form
https://www.tinkercad.com/

55

3. Click on the 'Sign in' option, if you have an account in Autodesk. Otherwise, click on

the 'JOIN NOW' option if you don't have an account, as shown below:

Fig 5.2 Menu Window

The SIGN IN window will appear as:

Fig 5.3 Sign in Window

56

We can select any sign-in method. Specify the username and password. We already have an

account in Autodesk, so we will sign-in directly with the username and password.

The JOIN window will appear as:

Fig 5.4 Join window

Select the preference according to the requirements and sign-in using Gmail, etc.

4. Now, a window will appear, as shown below:

Fig 5.5 Tinkercad Window

57

5. Click on the 'Create new circuit' option to start designing the Arduino circuit, as shown

above. The 'Circuits' option will also show the previous circuits created by user. The design

option is used for creating the 3D design, which is of no use in Arduino.

6. We are now ready to start with the Autodesk Tinkercad. We can start creating our projects.

5.1.4 FEATURES OF SIMULATOR

• Glow and move circuit assembly. It means we can use the components of a circuit

according to the project requirement. Glow here signifies the glowing of LED.

• Integrated product design. It means the electronic components used in the circuitry

are real.

• Arduino Programming. We can directly write the program or code in the editor of the

simulator.

• We can also consider some ready-made examples provided by the tinkercad for better

understanding.

• Realtime simulation. We can prototype our designs within the browser before

implementing them in real-time.

5.2 FLEX SENSOR SIMULATION

5.2.1 Connection Of Flex Sensor

Fig 5.6 Flex Sensor connection in tinkercad

58

One pin of Flex Sensor is connected to Ground and another pin is connected to +5V through

1Kohm resistor.

5.2.2 Results Of Flex Sensor

Fig 5.7 Output of Flex Sensor

Here, we had made a bend in the flex sensor. The bend angle is 63 degrees, So According to

that end in the flex sensor, The output is printed in the Serial Monitor.

59

5.3 ACCELEROMETER SIMULATION

5.3.1 Connection Of Accelerometer

Fig 5.8 Accelerometer Connection

60

5.3.2 Results Of Accelerometer

Fig 5.9 Output of Accelerometer

5.4 TOUCH SENSOR SIMULATION

Fig 5.10 Touch Sensor Simulation in Proteus Software

If there is any touch detected the output value will be 1 and if there is no touch detected then

the output will be 0.

61

RESULTS:

During the implementation, all the three sensors are connected to Arduino Uno board using

jumper wires. Once the connections are made perfectly, then Arduino takes inputs from three

sensors (Flex sensor, accelerometer, Touch sensor). Flex sensors are placed on fingers which

measure the bending of fingers according to the gesture made with the glove. An

accelerometer is placed on the palm which measures the location of the hand in X, Y, Z axes.

Touch sensor is placed on the palm and detects if there is any touch between the fingers and

palm. Initially, only flex sensors are implemented in this sign language transition. But, some

hand gestures are similar to other gestures. To distinguish these types of gestures an

additional sensor Accelerometer is also implemented. This is very important in distinguishing

two signs when they have the same bend in the fingers but different bends in the palm.

Similarly in the case of touch sensor.

The designed circuit has been connected and tested with many Hand gesture where the

voice was clear for all the gestures, some examples are shown below

 Fig 5.11: yes gesture Fig 5.12: output for yes gesture

62

Fig 5.13: thank you gesture Fig 5.14: output for thank you gesture

 Fig 5.15: yes gesture Fig 5.16: output for yes gesture

63

The gesture manager is the principal part of the recognition system. It contains data to match

with incoming data. The system tries to match incoming data with existing posture. The

bend values of the fingers and for each posture definition the distance to the current

data is calculated. From the convenience of simple flex sensors, a user is able to interact

with others in more comfortable and easier manner. This makes it possible for the user to not

only interact with their community but with others also and they can also live normal life.

DISCUSSIONS:

During the implementation, each and every single part was tested alone the following points

have been observed :

The flex sensors function correctly and accurately. They are able to identify the correct

variance emitted by each finger or hand gesture. The controller (Arduino) collects the data

and sends it directly to the mobile application through the BT module in an appropriate way.

The BT module is able to directly link to the needed device once the system is plugged into

the power source or power bank in order to transmit and receive the number variance. One of

the most important aspects of this project is the correct classification of the received input,

which is forwarded by the mobile app, producing the expected output which is to be

translated by the mobile app. into speech and text. At first, the data should be sent from the

Arduino to the BT that assures quick and reliable connectivity. The voice output could be

understood clearly.

64

CHAPTER 6

CONCLUSION

In this project, we constructed a Smart-Glove for supporting blind and deaf-blind people in

communicating with normal people that are not familiar with braille. The Smart-Glove is

able to connect to Android mobile and facilitate exchange of messages. Whereas the android

application is able to send and receive text messages from and to the Smart-Glove and the

Smart-Glove able to send and receive braille messages from and to the application. The

Smart-Glove is light, cheap, easy to use and no risk. We believe that the project is an

effective and very useful for deaf-blind people if they are taught braille where they can

communicate with their families and people around them.

As future scope of the project, the system may be extended to support other languages, and

the system can use several way to communicate, it can use Wi-Fi connection, which enables

a faster connection and better range from the base station or GSM module (Global System

for Mobile communication) GSM is the most widespread and it's a cellular technology used

for transmitting mobile data services, the most obvious advantage of it is widespread use

throughout the world.

65

REFERENCES

[1] D. J. Sturman and D. Zeltzer, “A survey of glove-based input,” IEEE Comput. Graph.

Appl., vol. 14, no. 1, pp. 30–39, Jan. 1994.

[2] T. Takahashi and F. Kishino, “Hand gesture coding based on experiments using a hand

gesture interface device,” SIGCHI Bull., vol. 23, no. 2, pp. 67–74, Apr. 1991.

[3] K. Murakami and H. Taguchi, “Gesture recognition using recurrent neural networks,” in

Proc. Conf. Human Factors Comput. Syst., 1991, pp. 237–242.

[4] J. L. Hernandez-Rebollar, R. W. Lindeman, and N. Kyriakopoulos, “A multi-class pattern

recognition system for practical finger spelling translation,” in Proc. IEEE Int. Conf.

Multimodal Interfaces, 2002, pp. 185– 190.

[5] J. S. Kim, W. Jang, and Z. Bien, “A dynamic gesture recognition system for the Korean

sign language (KSL),” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26, no. 2, pp. 354–

359, Apr. 1996.

[6] W. Kadous, “GRASP: Recognition of Australian sign language using instrumented

gloves,” Bachelor’s thesis, Univ. New South Wales, Sydney, Australia, 1995.

[7] P. Vamplew, “Recognition of sign language gestures using neural networks,” presented at

the Eur. Conf. Disabilities, Virtual Reality Associated Technol., Maiden

[8] W. Gao, J. Ma, J. Wu, and C. Wang, “Sign language recognition based on

HMM/ANN/DP,” Int. J. Pattern Recognit. Artif. Intell., vol. 14, no. 5, pp. 587–602, 2000.

[9] C. Wang, W. Gao, and S. Shan, “An approach based on phonemes to large vocabulary

Chinese sign language recognition,” in Proc. IEEE Int. Conf. Autom. Face Gesture

Recognit., 2002, pp. 393–398.

[10] R. H. Liang and M. Ouhyoung, “A real-time continuous alphabetic sign language to

speech conversion VR system,” Comput. Graph. Forum, vol. 14, no. 3, pp. 67–76, 1995.

[11] R. H. Liang and M. Ouhyoung, “A sign language recognition system using hidden

Markov Model and context sensitive search,” in Proc. ACM Symp. Virtual Reality Softw.

Technol., 1996, pp. 59–66.

[12] R. H. Liang and M. Ouhyoung, “A real-time continuous gesture recognition system for

sign language,” in Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., 1998, pp. 558–567.

66

[13] S. Fels and G. E. Hinton, “Glove Talk 2: A neural network interface which maps

gestures to parallel formant speech synthesizer controls,” IEEE Trans. Neural Netw., vol. 9,

no. 1, pp. 205–212, Jan. 1998. [14] W. J. Greenleaf, “Developing the tools for pratical VR

applications,” IEEE Eng. Med. Biol. Mag., vol. 15, no. 2, pp. 23–30, Mar./Apr. 1996.

[15] W. Gao, J. Ma, S. Shan, X. Chen, W. Zeng, H. Zhang, J. Yan, and J. Wu, “Handtalker:

A multimodal dialog system using sign language and 3-d virtual human,” in Proc. Int. Conf.

Adv. Multimodal Interfaces, 2000, pp. 564–571.

[16] J. Kramer and L. Leifer, “The talking glove: An expressive and receptive verbal

communication aid for deaf, deaf-blind and non-vocal,” Stanford Univ., Uninc Santa Clara

County, CA, Tech. Rep., 1989

