

LABORATORY MANUAL FOR THE COURSE

MICROCONTROLLERS & EMBEDDED SYSTEMS LABORATORY

(ECE 328)

(Mr. N.Srinivasa Naidu)

 Signature of the Physical Lab Incharge:

 (Dr. V.Rajya Lakshmi)

 Signature of the HOD:

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES(A)
(Affiliated to AU, Approved by AICTE &Accredited by NBA)

Sangivalasa-531162, Bheemunipatnam Mandal, Visakhapatnam Dt.
Phone: 08933- 225084,226395

MICROCONTROLLER & EMBEDDED SYSTEMS LABORATORY
ECE328 Credits:2

Instruction: 3 Lab periods Sessional Marks:50

End Exam: 3 Hours End Exam Marks:50
Prerequisites:

Microprocessors and Interfacing, Microcontroller & Embedded Systems

COURSE OBJECTIVES

 To program both 8051 to meet the requirements of the user.

 To interface various peripherals

 To handle interrupts

 To design a microcomputer to meet the requirement of the user

COURSE OUTCOMES

At the end of the course student will be able to
1. Program 8051 microcontroller to meet the requirements of the user.

2. Interface peripherals like switches, LEDs, stepper motor, Traffic lights controller, etc..,

3. Handle interrupts

4. Design a microcontroller development board to meet the requirements of the user

Mapping of Course Outcomes with Program Outcomes:

 PO PSO

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO

1 2 1 2 2 3 - - - - - 1 2 2 2

2 3 2 2 2 3 - - - - - 1 2 3 2

3 3 2 2 2 3 - - - - - 1 2 2 2

4 3 2 3 3 3 - - - - - 1 3 3 3

3: high correlation, 2: medium correlation, 1: low correlation

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialisation for the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering
sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system
components or processes that meet the specified needs.

4. Conduct investigations of complex problems: An ability to design and conduct scientific and engineering
experiments, as well as to analyze and interpret data to provide valid conclusions

5. Modern tool usage: Ability to apply appropriate techniques, modern engineering and IT tools, to engineering
problems.

6. The engineer and society: An ability to apply reasoning to assess societal, safety, health and cultural issues
and the consequent responsibilities relevant to the professional engineering practice

7. Environment and sustainability: An ability to understand the impact of professional engineering solutions in
societal and environmental contexts

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

9. Individual and team work: Ability to function effectively as an individual, and as a member or leader in a
team, and in multidisciplinary tasks.

10. Communication: Ability to communicate effectively on engineering activities with the engineering community
such as, being able to comprehend and write effective reports and design documentation, make effective
presentations.

11. Project management and finance: An ability to apply knowledge, skills, tools, and techniques to project
activities to meet the project requirements with the aim of managing project resources properly and achieving
the project’s objectives.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and
life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1: Professional Skills: An ability to apply the knowledge of mathematics, science, engineering fundamentals in
ECE to various areas, like Analog & Digital Electronic Systems, Signal & Image Processing, VLSI & Embedded
systems, Microwave & Antennas, wired & wireless communication systems etc., in the design and implementation
of complex systems.
PSO2: Problem-Solving Skills: An ability to solve complex Electronics and communication engineering problems,
using latest hardware and software tools, along with significant analytical knowledge in Electronics and
Communication Engineering
PSO3: Employability and Successful career: Acquire necessary soft skills, aptitude and technical skills to work in
the software industry and/or core sector and able to participate and succeed in competitive examinations.

List of Experiments:

1. Study and familiarization of 8051 Microcontroller trainer kit

2. Assembly Language Program for addition of 8-bit numbers stored in an array

3. Assembly Language Program for Multiplication by successive addition of two 8-bit numbers

4. Assembly Language Program for finding largest no. from a given array of 8-bit numbers

5. Assembly Language program to arrange 8-bit numbers stored in an array in ascending order

6. Stepper motor control by 8051 Microcontroller

7. Interfacing of 8-bit ADC 0809 with 8051 Microcontroller

8. Interfacing of 8-bit DAC 0800 with 8051 Microcontroller and Waveform generation using

DAC

9. Implementation of Serial Communication by using 8051 serial ports

10. Assembly Language Program for use of Timer/Counter for various applications

11. Traffic light controller/Real-time clock display

12. Simple test program using ARM 9 mini 2440 kit (Interfacing LED with ARM 9 mini 2440

kit)

NOTE:

1. It is compulsory for each student to create their own Microcontroller Development Board for

personal use

2. A student has to perform a minimum of 10 experiments.

 Scheme of evaluation for MCES Laboratory:

Lab Internal:

I. Observation – 5M

(Successful Wording/Algorithm/flowchart-1M, Successful Program

verification – 1M, Successful Program Execution – 1M, Record Initial and

Indexing – 2M)

II. Record – 10M

(Aim&Apparatus – 1M, Theory – 3M, Algorithm/flowchart – 2M(each

experiment should have atleast one flowchart, Calculations, Input/Output

observations & Result – 1M, Daily Performance 3M)

III. Lab Project – 10M

(It is compulsory for each student to create their own Microcontroller

Development Board for personal use based on 8051)

IV. Attendance – 5M

V. Internal End Exam – 20M

(Aim, Apparatus – 2M, Program – 10M (Mnemonics/code – 5M, Relevant

Comments – 2M, Algorithm/flow chart – 3M), Calculations, Input/Output

observations & Result – 5M, Performance – 3M)

Lab External:

I. Writeup – 10M

(Aim– 2M, Apparatus – 1M, Theory – 2M, Algorithm/flowchart – 5M)

II. Program – 15M

(Mnemonics/Code – 10M, Comments – 3M, Optimization– 2M)

III. Performance – 5M

(Experimentation skill - Connections,.etc)

IV. Result – 10M

(Identifying & Showing the inputs and outputs – 2M and/or theoretical

calculations – 2M, Output Verification – 6M (Partial output – 3M, No

Output – 0M)

V. Viva – 10M

Experiment-1

Introduction to Keil:-

Embedded system means some combination of computer hardware and

programmable software which is specially designed for a particular task like

displaying message on LCD. It involves hardware (8051 microcontroller) and

software (the code written in assembly language).

Some real life examples of embedded systems may involve ticketing machines,

vending machines, temperature controlling unit in air conditioners etc.

Microcontrollers are nothing without a Program in it.

One of the important part in making an embedded system is loading the

software/program we develop into the microcontroller. Usually it is called “burning

software” into the controller. Before “burning a program” into a controller, we must

do certain prerequisite operations with the program. This includes writing the program

in assembly language or C language in a text editor like notepad, compiling the

program in a compiler and finally generating the hex code from the compiled

program. Earlier people used different software‟s /applications for all these 3 tasks.

Writing was done in a text editor like notepad/ WordPad, compiling was done using a

separate software (probably a dedicated compiler for a particular controller like 8051),

converting the assembly code to hex code was done using another software etc. It

takes lot of time and work to do all these separately, especially when the task involves

lots of error debugging and reworking on the source code.

The µVision IDE is the easiest way for most developers to create embedded

applications using the Keil development tools. The new Keil µVision4 IDE has

been designed to enhance developer's productivity, enabling faster, more efficient

program development.

Keil MicroVision is a free software which solves many of the main points for an

embedded program developer. This software is an integrated development

environment (IDE), which integrated a text editor to write programs, a compiler

and it will convert your source code to hex files too. µVision4 introduces a flexible

window management system, enabling us to drag and drop individual windows

anywhere on the visual surface including support for Multiple Monitors.

2

http://www.circuitstoday.com/embedded-systems-an-introduction

Embedded Systems Vs General Computing Systems

C51 Development Tools

Keil development tools for the 8051 microcontroller family support every level of

developer from the professional applications engineer to the student just learning

about embedded software development. The industry-standard Keil C Compilers,

Macro Assemblers, Debuggers, Real-time Kernels, and Single-board Computers

support ALL 8051-compatible derivatives and help you get your projects

completed on schedule.

The following table shows the Keil C51 Product Line (across the top) and the
Components that are included (along the left side). You may use this information
to find the development tool kit that best fits your needs.

3

Introduction

The C51 development tool chains are designed for the professional software
developer, but any level of programmer can use them to get the most out of the
8051 microcontroller architecture.

With the C51 tools, embedded applications can be generated for virtually every
8051 variant. Refer to the µVision Device Database for a list of currently
supported microcontrollers.

This introduction includes a brief explanation of the:

 Software Development Cycle that describes the steps and tools involved to
create a project.

 Development Tools that describes the major features of the Keil C51

development tools including the µVision IDE and Debugger.

 Folder Structure that describes the default location of µVision and the C51
tool chain installation



Development Tools


The Keil C51 development tools offer numerous features and advantages that help
you to develop embedded applications quickly and successfully. Find out more
about the supported devices and the possible tool combinations available for the
different 8051 variants.


The following block diagram shows the components involved in the build process.



The µVision IDE is a window-based software development tool that combines
project management and a rich-featured editor with interactive error correction,

option setup, make facility, and on-line help. Use µVision to create source files and
organize them into a project that defines your target application.























4

http://www.keil.com/dd
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_in_softdevcycle.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_devtools.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_in_folderstructure.htm
ms-its:c51.chm::/c51_in_devices.htm
ms-its:uv4.chm::/uv4_overview.htm

µVision Integrated Development Environment (IDE)

C Compiler

The Keil Cx51 Compiler is a full ANSI implementation of the C programming
language and supports all standard features of the C language. In addition,

numerous extensions have been included to directly support the 8051 and extended
8051 architecture.

Macro Assembler

The Keil Ax51 Macro Assembler supports the complete instruction set of the 8051
and all 8051 derivatives.

Library Manager

The LIBx51 Library Manager allows you to create the object library from object

files created by the compiler and assembler. Libraries are specially formatted,

ordered program collections of object modules that may be used by the linker at a

later time. When the linker processes a library, only those object modules

necessary to create the program are used.

Linker/Locater

The Lx51 Linker/Locater creates the final executable 8051 program and combines
the object files created by the compiler or assembler, resolves external and public

references, and assigns absolute addresses. In addition, it selects and includes the
appropriate run-time library modules.

5

ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_c51.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_a51.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_libx51.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_lx51.htm

µVision Debugger

The µVision Debugger is ideally suited for fast and reliable program debugging.
The debugger includes a high-speed simulator capable of simulating an entire 8051
system including on-chip peripherals and external hardware.

The µVision Debugger provides several ways to test programs on target hardware:

 Use the Keil ULINK USB-JTAG adapter for downloading and testing
your program.

 Install a target monitor on your target system and download your

program using the built-in monitor interface of the µVision Debugger.


 Use the Advanced GDI interface to attach and use the µVision
Debugger front end with your target system.

RTOS Kernel

The RTOS Kernel, describes the advantages of using a real-time kernel like the
Keil RTX51 Tiny in embedded systems.

Creation of HEX File

Some applications require a HEX file to download the application software into the
physical device using a Flash programming utility. µVision creates HEX files with
each build process when Create HEX File is enabled in the dialog Options for
Target Output.

If code banking is used, then the application has to be converted with the OC51
Banked Object File Converter prior to using the OH51 Object/Hex converter.

6

ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_uvisiondebugger.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_ulink.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_dt_rtx.htm
ms-its:oc51.chm::/default.htm
ms-its:oh51.chm::/default.htm

When the extended LX51 Linker is used, it is mandatory to use the OHx51
Extended Object-HEX Converter to generate an Intel HEX-386 file that contains
the common area and all the code banks.

Start Debugging

µVision provides several ways to invoke debugging commands:

 Commands used from the menu Debug or the Debug Toolbar.

 Commands entered manually in the Command Window.

 Commands available from the Context Menu of the Editor or Disassembly
window.



 Debug Functions executed from an initialization file.


Start the Debugger


 Use the Start/Stop Debug Session button from the Debug Toolbar to start
or stop a debugging session.



 The current instruction or high-level statement (the one about to execute) is
marked with a yellow arrow. For each step-command, the arrow moves to
reflect the new current line or instruction.



 Depending on the Options for Target — Debug configuration, µVision
loads the application program and runs the startup code (Run to main ()).



 µVision saves the editor screen layout and restores the screen layout of the

last debug session. When program execution stops, µVision opens an Editor
window with the source text or shows MCU instructions in the Disassembly

Window.



Execute Commands


 Run the program to the next break point, or type GO in the Command Line.

 Halt the program, or press Esc while in the Command Line


 Click Reset from the Debug Toolbar or from the Debug — Reset CPU
Menu or type RESET in the Command Line to reset the CPU.

















7

ms-its:ohx51.chm::/default.htm
ms-its:ohx51.chm::/default.htm
ms-its:uv4.chm::/uv4_ui_debug.htm
ms-its:uv4.chm::/uv4_db_dbg_outputwin.htm
ms-its:uv4.chm::/uv4_debug_functions.htm
ms-its:uv4.chm::/uv4_cm_go.htm
ms-its:uv4.chm::/uv4_cm_reset.htm

Single-Stepping Commands

 To step through the program and into function calls. Alternatively, you can
enter TSTEP in the Command Line, or press F11.

 To step over the program and over function calls. Alternatively, you can

enter PSTEP in the Command Line, or press F10.

 To step out of the current function. Alternatively, you can enter OSTEP in
the Command Line, or press Ctrl+F11.



On-Chip Peripherals


There are a number of techniques you must know to create programs that can use
the various on-chip peripherals and features of the 8051 family. Use the code
examples provided here to get started working with the 8051.


There is no single standard set of on-chip peripherals for the 8051 family. Instead,

8051 chip vendors use a wide variety of on-chip peripherals to distinguish their
parts from each other. The code examples demonstrate how to use the peripherals

of a particular chip or family. Be aware that there are more configuration options
available than are presented in this text.


Follow the links to the on-chip peripherals:


 Header Files - use the include files to define peripheral registers of the
device in use.

 Startup Code - initializes the microcontroller and transfers control to the

main function.

 Special Function Registers - explains how to use Special Function
Registers (SFRs).

 Register Banks - explains how to use Register Banks.

 Interrupt Service Routines - lists the different interrupt variants on 8051

devices.

 Interrupt Enable Registers - shows how to enable the interrupts.

 Parallel Port I/O - explains how to use standard I/O ports.

 Timers/Counters - explains standard timers and counters.

 Serial Interface - explains the implementation of serial UART
communication.





8

ms-its:uv4.chm::/uv4_cm_tstep.htm
ms-its:uv4.chm::/uv4_cm_pstep.htm
ms-its:uv4.chm::/uv4_cm_ostep.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_headerfile.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_startupCode.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_SFRs.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_registerBanks.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_interrupts.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_interruptEnableRegs.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_parallelPortIO.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_timersCounters.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_serialInterface.htm

 Watchdog Timer - use a watchdog timer to recover from hardware or
software failures.

 D/A Converter - convert a digital output voltage to an analog output value.

 A/D Converter - convert an analog input voltage to a digital value.

 Power Reduction Modes - put the device into IDLE or POWER DOWN

mode.


Startup Code


Startup Code is executed immediately upon RESET of the target system and
performs the following operations:


 Depending on the device variant, device specific features are configured.


 Clears data memory (optionally).


 Initializes the reentrant stack and re-entrant stack pointer (optionally).


 Initializes the 8051 hardware stack pointer.


 Transfers control to the variable initialization code or to the main C function.






































































9

ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_watchDogTimer.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_DAConverter.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_ADConverter.htm
ms-its:C:/Keil_v5/C51/HLP/pm51.chm::/pm51_oc_powerModes.htm
ms-its:c51.chm::/c51_ap_startup.htm
ms-its:c51.chm::/c51_ap_init.htm

Differences Between µVision and C

A number of differences exist between ANSI C and the language subset
to support features in user- and signal functions.

 µVision does not differentiate between uppercase and lowercase.
The names of objects and control statements may be written in either
uppercase or lowercase.

 µVision has no preprocessor. Preprocessor directives like #define,
#include, and #ifdef are not supported.

 µVision does not support global declarations. Scalar variables must be

declared within a function definition. You may define symbols with the

DEFINE command and use them like you would use a global variable.

in µVision, variables may not be initialized when they are declared.

Explicit assignment statements must be used to initialize variables.

 µVision functions only support scalar variable types. Structures,
arrays, and pointers are not allowed. This applies to the function return
type as well as the function parameters.

 µVision functions may only return scalar variable types. Pointers
and structures may not be returned.

 µVision functions cannot be called recursively. During function
execution, µVision recognizes recursive calls and aborts function
execution if one is detected.

 µVision functions may only be invoked directly using the function
name. Indirect function calls via pointers are not supported.

 µVision supports only the ANSI style for function declarations with
a parameter list. The old K&R format is not supported. For example, the
following ANSI style function is acceptable.

10

High Level Language –‘C’ V/s Embedded C

 „C‟ is a well-structured, well defined and standardized general purpose
programming language with extensive bit manipulation support.

 „C‟ offers a combination of the features of high level language and assembly
and help sinhard ware access programming (system

level programming) as well as business package developments (Application
developments like payroll systems, banking applications etc).

 The conventional „C‟ language follows ANSI standard and it incorporates
various library files for different operating systems.

 A platform (Operating System) specific application, known as, compiler is
used for the conversion of programs written in „C‟ to the target processor (on
which the OS is running) specific binary files.

Embedded C can be considered as a subset of conventional „C‟ language.

 Embedded C supports all „C‟ instructions and incorporates a few target
processor specific functions /instructions.

 The standard ANSI „C‟ library implementation is always tailored to the target
processor /controller library files in Embedded C.

 The implementation of target processor /controller specific functions
/instructions depends upon the processor /controller as well as the supported cross-
compiler for the particular Embedded C language.

 A software program called „Cross-compiler‟ is used for the conversion of

programs written in Embedded C to target processor /controller specific instructions.

11

Procedure:-

Create new u vision project

Select the folder (newly created) to save the project

12

Save the project

Select the vendor “Atmel” and device “AT89C51”

13

Addition of STARTUP.A51 to project folder

STARTUP.A51 is added

14

The program to print “welcome to ECE department” is written

The program is saved as prg3.c

15

Prg3.c is to be added to Source Group1

Select the program prg3

16

Now prg3.c is added to Source Group 1

Build the target

17

Debugging the target

New window evaluation mode appeared. Press ok

18

Run the program

Selecting for UART#1 from serial windows

19

Check the output at UART#1 window

Select Port1 from i/o ports in peripherals

20

Port1 window is displayed with D0 as 0

Port1 window is displayed with D0 as 0

21

Stop debugging process

After debugging, window appears in this format

22

Experiment-2

Aim of the Experiment: - Write a C Program to print hello world.

Software required: - Keil u vision 5

Theory: - This experiment aims to print “hello world” using the software keil u
vision 5. The program is by default present after installation of this software. Firstly

the header files REG52.H, stdio.h are declared for the intended 8051. Programming

for debugging with Monitor-51is made. Now the main function starts. The serial port

for 1200 baud at 16MHz is set up. An embedded program never exits (because there is

no operating system to return to). It must loop and execute forever. So an infinite loop

is made that Toggle P1.0 each time we print "Hello World".

Program:-

#include <REG52.H>

#include <stdio.h>

#ifdef MONITOR51

char code reserve [3] _at_ 0x23;

#endif

void main (void)

{

#ifndef MONITOR51

SCON = 0x50;

TMOD |= 0x20;

TH1 = 221;

TR1 = 1;

TI = 1;

#endif

While (1) {

P1 ^= 0x01;

printf ("Hello World\n");

}

}

23

Procedure:-

As said the program for hello world is by default present after the installation of

the keil u vision software, the program is loaded by following certain steps which

is as follows:-

Select open project from project

24

Select Keil_v5 present in Local Disk (C:)

Next select the folder C51

25

Next select the folder examples

Next select the folder HELLO

26

Now select and open uvision4 project file

After selecting the window appears in this format (HELLO.C is added to Source

Group 1)

27

Program of HELLO.C

Build the target

28

Displaying 0 errors and 0 warnings

Debugging the target

29

New window evaluation mode appeared. Press ok

Now the window appears in this format

30

Run the program

Selecting for UART#1 from serial windows

31

Check the output at UART#1 window

Select Port1 from i/o ports in peripherals

32

Port1 window is displayed with D0 as 1

Port1 window is displayed with D0 as 0

33

Then stop debugging the process

After closing the program, the window appears in this format

34

Now remove HELLO.C from source group 1

Now select yes

35

Output:-

HELLO WORLD with D0=1

HELLO WORLD with D0=0

36

Observation:-

From the above outputs it is analyzed that the message “hello world” is printed at

UART#1 at each time P1.0 is toggled.

Conclusion:-

The experiment to print hello world using keil u vision successfully.

37

Experiment-3

Aim of the experiment:- Write a C program to store the data in the accumulator.

Software required: - Keil u vision 5

Theory: - This experiment aims to store any data in the Accumulator using the
software keil u vision 5. In this program, the data 0x05 is to be stored in

accumulator i.e. value 05 in hexadecimal. Firstly the header files REG51.H is

declared for the intended 8051. Then the main function starts. In the main function

0x05 is stored in Acc variable.

Program:-

#include<reg51.h>

void main()

{

Acc=0x05;

}

Procedure :- The procedure for the program of storing a data in accumulator is
as follows.

A new file is is created

38

The program is written

The program is to be saved

39

The program is saved in a new folder (created folder ece lab)

The program is to be saved with the extension .c

40

Addition of prg1.c to the Source Group1

The newly created folder ece lab is selected

41

Now prg1.c is selected

Check whether the prg1.c is added in Source Group1 or not. Now bulid(F7) the

target.

42

Check for any errors in program in the build output. Here displaying 0 errors and 0

warnings.

Start debugging session

43

New window evaluation mode appeared. Press ok

44

Run the program

Select step from debug or press F11

45

Check the value of a register.

Output:-

The value of accumulator is 05

Observation:-

From the above output it is analyzed that the value 05 is stored in accumulator.

Conclusion:-

The experiment to store any data in accumulator using keil u vision successfully.

46

Experiment-4

Aim of the experiment:- Write a C Program to send values 00-ff to Port 1.

Software required: - Keil u vision 5

Theory: - This experiment aims to send value 00-ff using the software keil u vision

5. In this program, the data 00-ff is to be sent to Port1. Firstly the header files

reg51.H is declared for the intended 8051. Then the main function starts. In the

main function an unsigned character is initialized followed by a for loop where 0-

255(00-ff) is assigned to Port1.

Program:-

#include<reg51.h>

void main()

{

unsigned char z;

for(z=0; z<=255; z++)

P1=z;

}

Procedure: - The procedure for the program of storing a data in accumulator is
as follows.

File


new


Program(code)


 Save


 Add existing files to source group 1


Build


 Start Debug


 Run


 Peripherals


 Port1


Debug the process

47

Output:-

Observation:-

From the above output it is observed that the data 00-ff is sent to Port1.

Conclusion:-

The experiment to send values 00-ff to Port 1 using keil u vision successfully

48

Experiment-5

Aim of experiment:- Write a C Program to send hex values for ASCII
characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f to port 1

Software required:- Keil u vision 5

Theory :- This experiment aims to send hex values for ASCII characters 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f to port 1 using the software keil u vision 5. Firstly

the header files reg51.H is declared for the intended 8051. Then the main function

starts. In the main function an unsigned character array is initialized

with”0123456789abcdef” and then unsigned character variable is initialized

followed by a for loop. The loop runs for 16 time where each time one character

from array is sent to Port1.

Program:-

#include<reg51.h>

void main()

{

unsigned char a[] = "0123456789abcdef";

unsigned char z;

for(z=0; z<=16; z++)

P1=a[z];

}

Procedure:- The procedure for the program of storing a data in accumulator is as
follows.

File


new


Program(code)


Build


 Start Debug


 Run

P1


Debug the process

Save


 Add existing files to source group 1




Peripherals


 Port1


Insert Break Point at

49

Output:-

1.

For input

‘0’

2. For input ‘a’

Observation:- From the above output it is observed that the data 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, a, b, c, d, e, f is sent to Port1.

Conclusion:- The experiment to send values 00-ff to Port 1 using keil u vision
successfully.

50

Experiment-6

Aim of experiment:- Write a C program to toggle all the bits of P1 continuously.

Software required:- Keil u vision

Theory:- This experiment aims to toggle all the bits of Port1 continuously

using the software keil u vision 5. Firstly the header files reg51.H is declared for

the intended 8051. Then the main function starts. In the main function an infinite

for loop starts where each time 0x55 followed by 0xAA is sent to Port1 and the

loop goes on.

Program:-

#include <reg51.h>

void main()

{

for (;;)

{

p1=0x55;

p1=0xAA;

}
}

Procedure:- The procedure for the program of storing a data in accumulator is as
follows.

File


new


Program(code)


 Save


 Add existing files to source group 1


 Build


Start Debug


 Run


 Peripherals


 Port1


Debug (step)


 Debug the process

51

Observation:- From the above output it is observed that all the bits of P1 are
toggling continuously.

Conclusion:- The experiment to toggle all the bits of P1 continuously using keil
u vision successfully

52

 Output:-

Experiment-7

Aim of experiment:- Write a C program to toggle bit D0 of port 1 50,000 times.

Software required:- keil u vision

Theory:- This experiment aims to toggle bit D0 of Port1 50,000 times using the
software keil u vision 5. Firstly the header files reg51.H is declared for the

intended 8051. The sbit keyword is a widely used 8051 C data type designed

specifically to access single bits of SFR registers. Here we use sbit toaccess the

individual bits of the Port1. Then the main function starts. In the main function a

for loop runs 50000 times where each time D0 of Port1 is made 0 and then 1.

Program:-

#include <reg51.h>

sbit MYBIT=P1^0;

void main(void)

{

unsigned int z;

for (z=0;z<=50000;z++)

{

MYBIT=0;

MYBIT=1;

}
}

Procedure:- The procedure for the program of storing a data in accumulator is as
follows.

File


new


Program(code)


 Save


 Add existing files to source group 1


 Build


Start Debug


 Run


 Peripherals


 Port1


Debug (step)


 Debug the process

53

Output:-

Observation:- From the above output it is observed that the bit D0 of the Port1
(P1.0) is toggled 50,000 times.

Conclusion:- The experiment to toggle bit D0 of port 1 50,000 times using keil u
vision successfully

54

Experiment-8

Aim of experiment:- Write a C program to generate a square wave for 1ms delay.

Software required:- keil u vision

Theory:- This experiment aims to generate a square wave for 1ms delay using

the software keil u vision 5. There are two ways to create a time delay in 8051 C: 1.

Using a simple for loop 2. Using the 8051 timers.

Program:-

#include<reg51.h>

void delay(void);

void main()

{

for(;;)

{

P1=0x00;

delay();

P1=0xFF;

delay();

}

}

void delay(void)

{

TMOD=0x01;

TL0=0X18;

TH0=0XFC;

TR0=1;

while(TF0==0);

55

TR0=0;

TF0=0;

}

Procedure:- The procedure for the program of storing a data in accumulator is as
follows.

File


new


Program(code)


 Save


 Add existing files to source group 1


Build


 Start Debug


 Run


 Analysis Window


 Set up


 New


 Write P1


Close


 Run


 Debug the process

Output:-

56

Observation:-

From the above output it is observed that the square wave is generated in the

analysis window.

Conclusion:-

The experiment to to generate a square wave for 1ms delay using keil u vision is

done successfully

57

Experiment-9

Aim of experiment :- Write a C program to send the data serially.

Software required:- keil u vision

Theory:- This experiment aims to send the data serially using the software keil u
vision 5.

Program:-

#include<reg51.h>

void main()

{

TMOD=0X20;

TH1=0XFA;

SCON=0X50;

TR1=1;

while(1)

{

SBUF='A';

while(TI==0)

TI=0;

}

}

Procedure:- Program(code)


Build


 Start Debug


 Run


output


Debug the process

Save


 Add existing files to source group 1


View


Serial Window


UART#1


Check the

58

Output:-

Observation:-

From the above output it is observed that the data is sent serially .

Conclusion:-

The experiment to to generate a square wave for 1ms delay using keil u vision is

done successfully

59

Experiment-10

Aim of experiment:- Write a C program to receive the data serially

keil u vision

Theory:- This experiment aims to receive the data serially using the software keil
u vision 5.

Program:-

#include<reg51.h>

void main()

{

unsigned char mydata;

TMOD=0x20;

TH1=0xFA;

SCON=0X50;

TR1=1;

while(1)

{

while(RI==0);

mydata=SBUF;

P1=mydata;

RI=0;

}

}

Procedure:- File


new


Program(code)


 Save


 Add existing files to source

group 1


 Build


 Start Debug


 Run


 View


Serial Window


UART#1


Check

the output


Debug the process
60

Software required:-

Output:-

FOR 8 INPUT

FOR 9 INPUT

61

Observation:-

From the above output it is observed that the data as input 8 (in ASCII as 38) and

input 9 (in ASCII as 39) is received serially

Conclusion:-

The experiment to receive the data serially using Keil u vision is done successfully

62

Experiment-11

Aim of the experiment:- Write a C program to convert packed BCD 0x29 to
ASCII and Display the bytes on P1and P2.

Software required:- keil u vision

Theory:- This experiment aims to convert packed BCD 0x29 to ASCII. To

covert packed BCD to ASCII, it must be converted to unpacked BCD is tagged
with 00110000(30H).

Packed BCD Unpacked BCD ASCII
0x29 0x02,0x09 0x32,0x39

00101001 00000010, 00001001 00110010,00111001

Program:-

#include <reg51.h>

void main(void)

{

unsigned char x,y,z;

unsigned char mybyte=0x29;

x=mybyte&0x0F;

P1=x|0x30;

y=mybyte&0xF0;

y=y>>4;

P2=y|0x30;
}

Procedure:- File


new


 Program(code)


 Save


 Add existing files to source

group 1


 Build


 Start Debug


 Run


 Peripherals


 Port1


 Peripherals


Port2


 Stop debug the process

63

Output:-

Observation:-

From the above output it is observed that packed BCD 0x29 is converted to ASCII

and Port2 displays 0x32 (00110010) and Port1 displays 0x39 (00111001) .

Conclusion:-

The experiment to convert packed BCD 0x29 to ASCII using keil u vision

successfully.

64

Experiment-12

Aim of the experiment:- Write a C program to convert the hex to decimal and
display the digits on P0, P1, and P2.

Software required:- keil u vision

Theory:- One of the most widely used conversions is the binary to decimal
coversion.in devices such as ADC(Analog to Digital Conversion) chips, the data is

provided to the microcontroller in binary. In order to display binary data we need

to convert it to decimal and then to ASCII. Since the hexadecimal format is a

convenient way of representing binary data we refer to the binary data as hex. This

experiment aims to to convert the hex to decimal using the software keil u vision

5. Firstly the header files reg51.H is declared for the intended 8051. Then the main

function starts. One way to do this is to divide it by 10 and keep the remainder.

Program:-

#include <reg51.h>

void main(void)

{

unsigned char x,binbyte,d1,d2,d3;

binbyte=0xFD;

x=binbyte/10;

d1=binbyte%10;

d2=x%10;

d3=x/10;

P0=d1;

P1=d2;

P2=d3;

}

Procedure:- File


new


 Program(code)


 Save


 Add existing files to source

group 1


 Build


 Start Debug


 Run


 Peripherals


 Port0


 Peripherals


 Port1


Peripherals


 Port2


Debug the process

65

Output:-

Observation:-

From the above output it is observed that the binary data 00-ff H is converted to

decimal which will give us 000-255. In this program binary data 11111101 or FD

H is converted to decimal 253 and the output is checked at Port0, Port1 and Port2.

Conclusion:-

The experiment to convert the hex to decimal and displaying the digits on P0, P1,
and P2 using keil u vision successfully.

66

