

I

FPGA Implementation of Canonical Signed Digit Algorithm

Based Floating Point Multiplication

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

 G.Sai Bhavani (316126512184) P.Vamsi Krishna(316126512162)

 S.Kamala Kumar (31612651294) P.Pavani (316126512210)

Under the guidance of

Dr. K.V.Gowreesrinivas

Assistant Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P)

2019-2020

II

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with

‘A’ Grade)

Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P)

 CERTIFICATE

This is to certify that the project report entitled “FPGA Implementation of Canonical Signed

Digit Algorithm Based Floating Point Multiplication” submitted by G.Sai

Bhavani(316126512184), P.Vamsi Krishna (316126512162), S.Kamala Kumar(

316126512194), P.Pavani (316126512210) in partial fulfillment of the requirements for the

award of the degree of Bachelor of Technology in Electronics & Communication

Engineering of Andhra University, Visakhapatnam is a record of bonafide work carried out

under my guidance and supervision.

Project Guide Head of the Department

Dr. K.V.Gowreesrinivas Dr. V.Rajyalakshmi

Assistant Professor Professor

Department of E.C.E Department of E.C.E

ANITS ANITS

III

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr. K.V.Gowreesrinivas

Assistant Professor, Department of Electronics and Communication Engineering, ANITS, for

his/her guidance with unsurpassed knowledge and immense encouragement. We are grateful

to Dr. V. Rajyalakshmi, Head of the Department, Electronics and Communication

Engineering, for providing us with the required facilities for the completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa, for their

encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all non-

teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting us

directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

 G.Sai Bhavani(316126512184),

 P.Vamsi Krishna(316126512162),

S.KamalaKumar(31612651194),

P.Pavani (316126512210).

IV

CONTENTS

ABSTRACT vi

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Project Objective 2

1.2 Project Outline 2

CHAPTER 2 FLOATING POINT MULTIPLICATION 3

2.1 Number System 3

2.1.1 Fixed Point 3

2.1.2 Floating Point 4

2.1.3 Single-precision floating point numbers 4

2.1.4 Floating point multiplication 5

2.2 Adders 6

 2.2.1 Half Adder 6

 2.2.2 Full Adder 7

 2.2.3 Ripple Carry Adder 9

 2.2.4 Carry Look Ahead Adder 9

 2.2.5 Carry Save Adder 11

 2.2.6 Carry Select Adder 11

 2.2.7 SPST Adder 12

 2.2.8 Comparison Between Different Types Of Adders 14

2.3 Multipliers 14

 2.3.1 Partial Products 15

 2.3.2 Types of multipliers 16

 a. Shift-and-Add multiplication 16

 b. Array multiplier 16

 c. Vedic multiplier 18

V

CHAPTER 3 Canonical Signed digit 21

3.1 Canonical Signed Digit Algorithm 21

3.2 Comparision between Binary multiplication Vs. CSD multiplication 22

3.3 CSD flow 24

3.4 FPM using CSD 24

CHAPTER 4 Overview of FPGA and EDA software 25

 4.1 Introduction 25

 4.2 Overview of Digilent Nexys 4 DDR board 25

 4.2.1 Features Of Nexys 4 DDR 26

 4.2.2 Power supplies 27

 4.2.3 Memory 28

 4.2.4 DDR2 28

 4.2.5 Quad SPI Flash 29

 4.2.6 Oscillators/Clocks 29

 4.2.7 Pmod ports 30

 4.3 Development flow 30

 4.4 Overview of Verilog 32

 4.4.1 Features of Verilog HDL 33

 4.4.2 Module Declaration 34

 4.5 Overview of EDA software 45

CHAPTER 5 Results and conclusions 54

REFERENCES 71

VI

ABSTRACT

In today’s generation the requirement of very high-speed operations in processors is increased.

To speed up the process of computation, arithmetic operations such as addition ,subtraction

and multiplication are used in various digital circuits. Floating point multiplication is a critical

operation in high power computing applications such as image processing, digital signal

processing.

The main multiplier characteristics are good accuracy, increase in speed, reduction in area and

less power consumption. As speed is always a constraint in the multiplication operation,

increase in speed can be achieved by reducing the number of stages in the calculation process.

Since the multiplier requires the longest delay among the basic operational blocks in digital

system, the critical path is determined more by the multiplier. Furthermore, multiplier

consumes much area and dissipates more power. Hence designing multipliers which offer

either of the following design targets – high speed, lower power consumption, less area or even

a combination of them is our prime concern.

The main aim of the project is to achieve the above design targets of a floating point multiplier

using Canonical Signed Digit(CSD) algorithm.

VII

LIST OF FIGURES

Fig No. Fig Name Page No.

 2.1 Half adder logic diagram 7

 2.2 Full adder logic diagram 8

 2.3 Ripple Carry adder logic diagram 9

2.4 Carry look ahead adder 10

2.5 Carry save adder 11

 2.6 Carry select adder 12

 2.7 SPST adder 13

2.8 Shift- and- add multiplier 16

2.9 Array multiplier 18

2.10 Vedic multiplication process 20

4.1 Nexys 4 DDR FPGA kit 27

4.2 PMOD ports 30

4.3 Development flow 31

4.4 CMOS inverter 36

 5.1(a) Carry look ahead adder simulation report 54

5.1(b) Carry look ahead adder power report 55

5.1(c) Carry look ahead adder synthesis report 55

5.2(a) Ripple Carry adder simulation report 56

5.2(b) Ripple Carry adder power report 56

5.2(c) Ripple Carry adder synthesis report 57

5.3(a) SPST adder simulation report 58

5.3(b) SPST adder power report 58

5.3(c) SPST adder synthesis report 59

5.4(a) Vedic multiplier simulation report 59

5.4(b) Vedic multiplier power report 60

5.4(c) Vedic multiplier synthesis report 60

5.5(a) Array multiplier simulation report 61

5.5(b) Array multiplier power report 61

5.5(c) Array multiplier synthesis report 62

5.6(a) Vedic multiplier using SPST simulation report 62

VIII

5.6(b) Vedic multiplier using SPST power report 63

5.6(c) Vedic multiplier using SPST synthesis report 63

5.7 (a) FPM multiplier simulation report 64

5.7(b) FPM multiplier power report 64

5.7(c) FPM multiplier synthesis report 65

5.8 FPGA Trainer kit and DAC Trainer kit 66

5.9 Implementation of 4 bit multiplication 67

5.10 Implementation of 13 bit multiplication 68

5.11 Implementation of 16 bit multiplication 69

IX

LIST OF TABLES

Table No. Table Name Page No.

2.1 Half adder truth table 7

2.2 Full adder truth table 8

2.3 Comparision between different types of adders 14

3.1 Binary to CSD conversion 23

4.1 Nexys 4 DDR power supplies 29

X

LIST OF ABBREVATIONS

DSP Digital Signal Processing

FPM Floating Point Multiplication

CSD Canonical Signed Digit

FPGA Field Programmable Gate Array

HDL Hardware Description Language

LSB Least Significant Bit

IEEE Institute of Electrical and Electronics Engineers

RCA Ripple Carry Adder

CLA Carry Look -Ahead Adder

CSA Carry Save Adder

CA Carry-Select Adder

SPST Spurious Power Suppression Technique

UT Urdhva Triyakbhyam

DDR Double Data Rate

LUT Look Up Tables

PLL Phase-Locked Loop

HR High Range

ODT On-Die Terminations

PHY Physical Layer

MiB mebibyte

RTL Register Transfer Level

EDA Electronic Design Automation

1

CHAPTER1

INTRODUCTION

The multiplication operation is one of the important operations in digital signal

processing (DSP) used in applications such as the Discrete Fourier Transform, Fast

Fourier Transform, convolution or digital filters. Thus, there has been a continuous

research for refining predefined multipliers and developing new approaches for efficient

multiplier architecture. There are many existing multiplier architectures such as Shift and

Add multiplier, Booth multiplier, Wallace tree multiplier,Array multiplier etc. Shift and

Add multiplier is the simplest among all however, large number of gates are required

making time inefficient architecture. High performance multipliers are preferred with

regular structures or reduced number of partial products. The array multiplier and

Wallace tree multiplier are based on the arrangement of adders aiming reduction in

overall critical path of the multiplication operation.

Many significant amounts of work have been published using the concept of Vedic

mathematics, obtaining efficient multiplier, divider, squaring and cube architectures. The

efficiency of multiplier is based on factors: (i) larger operation is reduced to the smaller

operation. (ii) the speed of addition operation in accumulation of partial products is

increased using carry select adders. The multiplier architecture is found to be efficient as

compared to the state-of-art Vedic multipliers .The reduction in number of stages in a

Vedic multiplication process leads to significant reduction in the propagation delay along

with switching power consumption. The multiplication operation is based on Urdhva

Tiryagbhyam algorithm of Vedic mathematics.

Generally, most of the multipliers consumes much area,consumes more power and work

with less accuracy.hence designing multipliers which offer either of the following design

targets-high speed,low power consumption,less area or even a combination of all these is

of substantial research interest.

2

PROJECT OBJECTIVE

 The main aim of the project is to simulate and implement FPM(Floating Point

Multiplication) multiplication using CSD(Canonical Signed Digit)algorithm and

compare it with existing multipliers.Vivado design suite is used for simulation. Synthesis

and implementation is done using Nexys 4 DDR board,which is ready to use digital cir

cuit development platform based on the latest Artix -7 Field Programmable Gate Array

(FPGA) (XC7A100T-1CSG324C) from Xilinx. The performance is compared in terms of

power,area and delay.

PROJECT OUTLINE

This project report is presented over the 4 remaining remaining chapters.Chapter 2

presents Floating Point Multiplication and provides the fundamentals of various adders

and multipliers. Chapter 3 explains about Canonical Signed Digit (CSD) algorithm.

Chapter 4 describes simulation and synthesis tools necessary to simulate and synthesize

the given hardwareusing Verilog Hardware Description Language .Chapter 5 presents the

simulation results which are simulated using Vivado Design Suite simulator.Also the

synthesis and implementation results are carried out using Nexys 4 DDR board,which is

ready to use digital cir cuit development platform based on the latest Artix -7 Field

Programmable Gate Array (FPGA) (XC7A100T-1CSG324C) from Xilinx. Finally,the

results of the project work and conclusions are drawn.

3

CHAPTER 2

FLOATING POINT MULTIPLICATION

2.1 NUMBER SYSTEM

The number system is a system generally used for representing or expressing numbers. It

is a mathematical notation which can be a combination of numbers and alphabets .There

are various kinds of number systems like binary,decimal,octal,hexadecimal based on the

base.The base is also called as “radix”.

2.1.1 FIXED POINT

The term 'fixed point' refers to the corresponding manner in which the numbers

are represented.A fixed point decimal number system has a limited number of digits and

a decimal point in a fixed location.

To define a fixed-point type conceptually, all we need are two criterions:

width of the number and binary point position within the number

We will use the notation fixed <w, b> where w stands for the number of bits used as a

whole (the Width of a number), and b stands for the position of binary point counting

from the Least Significant Bit(LSB) (counting from 0).

For example, fixed<8,3> denotes an 8-bit fixed point number, of which 3 right most bits

are fractional. Therefore, the bit pattern:

represents a real number:

 00010.110

= 1 * 2^1 + 1 * 2^-1 + 1 * 2^-2

= 2 + 0.5 + 0.25

= 2.75

4

 Fixed point numbers are indeed an in depth relative to integer representation. The two

only differs within the position of binary point. In fact, you would possibly even consider

integer representation as a "special case" of fixed-point numbers, where the binary point

is at position 0. All the arithmetic operations a computer can operate integer can therefore

be applied to fixed point number also . The disadvantage of number , is than in fact the

loss of range and precision. For example, in a fixed representation, our fractional part is

only precise to a quantum of 0.5. We cannot represent number like 0.75. We can

represent 0.75 with fixed, but then we lose range on the integer part.

2.1.2 FLOATING POINT

The floating point is the arithmetic using the representation of real numbers as an

approximation in supporting trade-off between range and precision. For this reason,

floating-point computation is usually found in systems which include very small and

really large real numbers, which require fast processing times.

In computers the real numbers are represented in floating point (FP) format. Usually this

suggests that the amount is split into exponent and fraction, which is additionally referred

to as significand or mantissa. A scientific notation with a symbol , exponent, mantissa

called floating point representation is employed for the important numbers. Its format is

Real number→mantissa×base^exponent

Where significand is an integer, base is an integer greater than or adequate to two, and

exponent is additionally an integer. For example:

1.2345 = 12345 x 10^-4

2.1.3 SINGLE PRECISION FLOATING POINT MULTIPLICATION

Most modern computers use Institute of Electrical and Electronics Engineers (IEEE) 754

standard for representation of floating-point numbers. One of the most commonly used

formats is the binary32 format of IEEE 754:

Sign bit-1 bit

Exponent-8 bits

Significand/mantissa-23 bits

5

Note that exponent is encoded using an offset-binary representation, which suggests it is

often off by 127. So, if usually 10000000 in binary would be 128 in decimal, in single-

precision the worth of exponent is:

exponent=128−offset=128−127=1

2.1.4 FLOATING POINT MULTIPLICATION

From the literature, it is observed that various multipliers such as Array multiplier, Vedic

multiplier and Radix based multipliers are involved in multiplication.

In general, Floating Point Multiplication (FPM) of two numbers involves four steps:

• Non-signed multiplication of mantissas

• Normalization of the result

• Addition of the exponents, taking into account the bias.

• Calculation of the sign.

Let us consider two numbers

a=6.96875

b=−0.3418

Normalized values and biased exponents:

a=6.96875=1.7421875×2^2

b=−0.3418=−1.3672×2^−2

The exponents:

Exponent a=2

Exponent b=−2

The numbers in IEEE754 binary32:

a=01000000110111110000000000000000(binary32)

=10111110101011110000000001101001(binary32)

The mantissa could be rewritten as following totalling 24 bits per operand:

6

Mantissa a=1.101111100000000000000002

Mantissa b=1.010111100000000011010012

Their multiplication totals in 48 bits:

Mantissa=1.001100001110001010110110111011100000000000000 002

Which has to be truncated to 24 bits:

mantissaa×b=1.001100001110001010110112=2.3819186687469482421875

10

The exponents 2 and -2 can easily be summed up so only last thing to do is

to normalize fraction which means that the resulting number is:

a×b=−2.3819186687469482421875=−1.19095933437347412109375×21

Which could be written in IEEE 754 binary32 format as:

a×b=01000000000110000111000101011011binary32

2.2 ADDERS
 An adder is a digital circuit which performs addition of numbers. In many computers

and other types of processors, adders are used in the ALU and also in other parts of the

processors. Adders are used to calculate addresses, table indices and are also used to

perform increment and decrement operations.The most common adders operate on binary

numbers.

2.2.1 HALF ADDER(HA)

A combinational circuit that performs the addition of two single bits is called Half

Adder. The half adder adds two binary digits A and B. It has two outputs, sum and carry.

The carry signal represents an overflow into the next digit of a multi-digit addition. To

design a simple half adder we use an XOR gate for sum and an AND gate for carry.

7

Fig 2.1 Half adder

logic diagram

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

Table 2.1 Half adder truth table

2.2.2 FULL ADDER(FA)

A combinational logic circuit that performs the addition of three single bits and produces

two outputs is called Full Adder. A, B and Cin are the inputs. Sum and C-OUT are the

outputs. In half adder we can add 2-bit binary numbers but we cannot add carry bit along

with the two binary numbers. But in full adder we can carry in bit along with two binary

numbers.

A B Cin S Cout

8

Table 2.2 Full adder truth table

Fig 2.2 Full adder logic diagram

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

9

2.2.3 RIPPLE CARRY ADDER(RCA)

Ripple carry adder is a structure of multiple full adders is cascaded in a manner to

gives the results of the addition of an n bit binary sequence and the carry will be

generated at every full adder stage. These carry output at each full adder stage is

forwarded to its next full adder and applied as a carry input to it. This process continues

up to its last stage of adder circuit. So, each carry output bit is rippled to the next stage of

a full adder and hence named as “RIPPLE CARRY ADDER”. The most important

feature of it is to add the input bit sequences if the sequence is 4 bit or 5 bit or any.

There are various types in ripple-carry adders. They are:

• 4-bit ripple-carry adder

• 8-bit ripple-carry adder

• 16-bit ripple-carry adder

Fig 2.3 Ripple Carry adder logic diagram

2.2.4 CARRY LOOK AHEAD ADDER(CLA)

In ripple carry adders, for each adder block, the two bits that are to be added are available

instantly. However, each adder block waits for the carry to arrive from its previous block.

So, it is not possible to generate the sum and carry of any block until the input carry is

known. The block waits for the block to produce its carry. So, there will be a

considerable time delay which is carry propagation delay.

10

A carry look-ahead adder reduces the propagation delay by introducing more complex

hardware. In this design, the ripple carry design is suitably transformed such that the

carry logic over fixed groups of bits of the adder is reduced to two-level logic.

Fig 2.4 Carry look ahead adder

11

2.2.5 CARRY SAVE ADDER(CSA)

A carry save adder is a type of digital adder used in computer microarchitecture to

compute the sum of three or more n-bit numbers in binary. It differs from other digital

adders in that it outputs two numbers of the same dimensions as the inputs, one which is a

sequence of partial sum bits and another which sequence of carry bits.

Fig 2.5 Carry save adder

2.2.6 CARRY- SELECT ADDER(CA)

In electronics, a carry-select adder is a particular way to implement an adder which is a

logic element that computes the (n+1)-bit sum of two n-bit numbers.

The carry-select adder generally consists of two ripple carry adders and a multiplexer.

Adding two n-bit numbers with a carry-select adder is done with two adders (therefore

two ripple carry adders), in order to perform the calculation twice, one time with the

assumption of the carry-in being zero and the other assuming it will be one. After the two

results are calculated, the correct sum, as well as the correct carry-out, is then selected

with the multiplexer once the correct carry-in is known.

12

Fig 2.6 Carry select adder

Above is the basic building block of a carry-select adder, where the block size is 4. Two

4-bit ripple carry adders are multiplexed together, where the resulting carry and sum bits

are selected by the carry-in. Since one ripple carry adder assumes a carry-in of 0, and the

other assumes a carry-in of 1, selecting which adder had the correct assumption via the

actual carry-in yields the desired result.

2.2.7 SPURIOUS POWER SUPPRESSION TECHNIQUE

ADDER(SPST)

 Adder is a circuit that is combinational and calculates the sum of three

(full adder) or two (half adder) inputs. Full adder can be cascaded to produce n-stages of

adder. This cascaded adder structure is called as parallel adder. The sum and carry of any

13

stage cannot be calculated until the input carry occurs, this leads to a delay in the addition

process. In order to overcome the delay, carry look ahead adder is proposed which is said

to be a fast adder. To improve the speed of carry, look ahead adder, Spurious Power

Suppression Technique (SPST) is used.

 The SPST has a detection logic circuit find out if a transition in data bits of the result

will occur in circuits, e.g., multipliers or adders. When a part of the data doesn’t cause

any change in the final result of the circuit, that portion of the data is latched to avoid

unwanted transitions inside the processing units.

 Fig 2.7 SPST adder

14

2.2.8 Comparision Between Different Types Of Adders:

S.No Adder Type No.Of AND Gates No.Of EX-OR

Gates

No.Of OR Gates

1 Half-Adder 1 1 -

2 Full Adder 2 2 1

3

8-Bit Ripple

Carry Adder

16 16 8

4 8-Bit Carry –

Look Ahead

Adder

16 16 8

5 4-Bit Carry

Save Adder

16 16 8

6 4-Bit Carry

Select Adder

16 16 8

Table 2.3 Comparision between different types of Adders

2.3 MULTIPLIERS

Today’s processors require a very high-speed operation. Arithmetic operations such as

addition, subtraction and multiplication are used in various digital circuits for high speed

computation. Multiplication is the basic arithmetic operation in signal processing. All the

signal and data processing operations like digital signal processing contain multiplication.

Speed is an essential parameter in a multiplication operation. It can be increased by

reducing the number of steps in the computation process. In a digital system design, the

parameters that determine the performance of the system are speed, power and area. As

the multiplier requires the longest delay among the basic operational blocks in a digital

15

system, the critical path is determined more by the multiplier. Also a multiplier consumes

much area and dissipates more power. Hence, designing multipliers which offer a

combination of the above parameters is better.

A multiplier is one of the key hardware blocks in many digital signal processing

systems. Some of the DSP applications where a multiplier plays an important role

include digital filters, digital communications and spectral analysis. Many current

DSP applications are targeted at portable, battery-operated systems, in order that

power dissipation becomes one among the first design constraints. As multipliers are

complex circuits and have to operate at a high system clock rate, reducing the delay

of a multiplier is an important a part of satisfying the overall design.

This operation involves two major steps:Partial product generation and

accumulation.

2.3.1 PARTIAL PRODUCTS

Formation of partial products

The basic algorithm for multiplication of two binary numbers, M(multiplier) and

N(multiplicand) makes use of the distributive property of multiplication. That is, if M can

be written as a sum of smaller numbers.

 M.N = (M0+M1+………. +Mm-1). N = M0N+M1N+………. +Mm-1N

Also a multiplier consumes most of the area and dissipates more power. Hence designing

multipliers which offer either of the following design targets – high speed, low power

consumption, less area or even a combination of them is preffered.

16

2.3.2 TYPES OF MULTIPLIERS

a. Shift-and-Add Multiplication

In this method, we add a number with itself and rotate the other number each time

and shift it by one bit to left along with the carry. If carry is present add those two

numbers.

Fig 2.8 Shift- and add multiplier

This algorithm adds the multiplicand to itself by M times, where M denotes the

multiplier. To multiply these two numbers this

algorithm takes the digits of the multiplier and places the intermediate product in the

appropriate position to the left of earlier results.

b. Array Multiplier

An array multiplier may be a digital combinational circuit used for multiplying two

binary numbers by employing an array of full adders and half adders. This array is

employed for the nearly simultaneous addition of the varied product terms involved. To

17

form the varied product terms, an array of AND gates is employed before the Adder

array.

Checking the bits of the multiplier one at a time and forming partial products may be a

serial operation that needs a sequence of add and shift micro-operations. The

multiplication of two binary numbers are often through with one micro-operation by

means of a combinational circuit that forms the merchandise bits all directly . This is a

quick way of multiplying two numbers since all it takes is that the time for the signals to

propagate through the gates that form the multiplication array. However, an array

multiplier requires an outsized number of gates, and for this reason it had been not

economical until the event of integrated circuits.

For implementation of array multiplier with a combinational circuit, consider the

multiplication of two 2-bit numbers as shown in figure. The multiplicand bits are b1 and

b0, the multiplier bits are a1 and a0, and therefore the product is:

Assume A = a1a0 and B= b1b0, the bits of the final product term P is written as:

1. P (0) = a0b0

2. P (1) =a1b0 + b1a0

3. P (2) = a1b1 + c1 where c1 is the carry generated during the addition for the P (1)

term.

4. P (3) = c2 where c2 is the carry generated during the addition for the P (2) term.

For the above multiplication, an array of four AND gates are required to form the

various product terms like a0b0 etc. and then an adder array is required to calculate

the sums involving the varied product terms and carry combinations mentioned

within the above equations so as to urge the final Product bits.

18

1. The first partial product is formed by multiplying a0 by b1, b0. The multiplication

of two bits like a0 and b0 produces a 1 if both bits are 1; otherwise, it produces 0.

This is just like an AND operation and may be implemented with an AND circuit .

2. The first partial product is formed by means of two AND gates.

3. The second partial product is formed by multiplying a1 by b1b0 and is shifted one

position to the left.

4. The above two partial products are added with two half-adder (HA) circuits.

Usually there are more bits within the partial products and it'll be necessary to use

full-adders to supply the sum.

5. Note that the least significant bit of the product does not have to go through an

adder since it is formed by the output of the first AND gate

Fig 2.9 Array multiplier

c. Vedic Multiplier

 The Vedic multiplication is predicated on 16 Vedic sutras which describes natural way

of solving an entire range of mathematical problems. A simple digital multiplier (referred

henceforth as Vedic multiplier) architecture supported the Urdhva Triyakbhyam

(UT)(Vertically and Cross wise) Sutra is presented. This Sutra was traditionally utilized

in ancient India for the multiplication of two decimal numbers in relatively less time.

19

Fig 2.10 Vedic multiplication process

1. Vertical Multiplication of 1st digits of 2 numbers.

2. Crosswise Multiplication Addition of 1st 2 digits 2 numbers. (i.e. Crosswise

Multiplication of 1st 2 digits and adding them.)

3. Crosswise Multiplication Addition of all 3 digits of both the numbers.

4. Crosswise Multiplication Addition of last 2 digits 2 numbers.

5. Vertical Multiplication of last digits 2 numbers.

6. For all steps, except 1st step, each compartment needs to have only 1 digit. If not

then carry forward initial digits to previous compartment.

20

 Fig 2.11 4*4 Vedic multiplier architecture (need to add some matter)

The multiplication operation in this Sutra is computed and the delay in output is reduced.

The sutra is also known as ‘vertically and crosswise’. Initially this Sutra was used for

only decimal numbers . However, it can also be used for binary numbers. The method

how binary multiplication is completed using UT method for 2-bit, 3-bit and 4-bit

numbers.

Since the partial products and their sums are calculated independently, the multiplier is

independent of the clock of the processor. The delay is generated only due to the

occurrence of carry from the partial products which is needed to be added in each next

step’s partial product.

21

CHAPTER 3

CANONICAL SIGNED DIGIT

CSD representations have proven to be useful in implementating multipliers with reduced

complexity,because cost of multiplication is a direct function of non zero bits in the

multiplier and as CSD algorithm helps in reducing the number of these non zero bits it is

very useful in implementing efficient multiplier.

The CSD format aims to scale back the amount of additives during multiplication. The

CSD format features a ternary set as against a binary set in number representation. The

symbols utilized in this format are {-1, 0, 1}. The goal is to group consecutive 1s and

alter them to a ternary representation from binary representation. This is done ranging

from the rightmost 1 and proceeding left until the last 1. So this never has adjacent non-

zero bits. It is proved that the amount of operations never exceeds n/2 and on a mean it

are often reduced to n/3.

3.1 Canonical Signed Digit Algorithm

 Conversion from a binary representation to CSD representation requires the following

steps:

• Observe where there are two consecutive 1’s and convert the right most 1 into -1

• Add +1 to the next bits

The CSD presentation of a number is unique. The number of nonzero digits is

minimal. There cannot be two consecutive non-zero digits

22

 for example, the binary value 1 1 1 1 1 (decimal number 31) could be written as the

signed-digit value 1 0 0 0 0 -1 = 25 - 20 =d31

CSD representation of integers 1, 2, … 10 is as follows:

B2 B1 B0 C3 C2 C1 C0

0 0 0 0 0 0 0

0 0 1 0 0 0 1

0 1 0 0 0 1 0

0 1 1 0 1 0 -1

1 0 0 0 1 0 0

1 0 1 0 1 0 1

1 1 0 1 0 -1 0

1 1 1 1 0 0 -1

Table 3.1 Binary to CSD conversion

3.2 Comparision of Binary multiplication Vs. CSD multiplication

Let us consider an example-14 multiplied with 15 .

 Multiplicand => 1110

 Multiplier=> 1111

23

2^7+2^6+2^4+2^1=d210 (2^7+2^6+2^5)-(2^3+2^2+2^1)=d210

Here when we observe binary multiplication the number of stages involved for

multiplication are more when compared to that of the stages of CSD multiplications.It is

clearly observed that the number of stages are decreased as the number of 1’s of the

multiplier are reduced and are converted into 0’s using the CSD algorithm.Later after

performing the multiplication in binary and CSD respectively the result is converted into

decimal format. And when observed the results both are of same value in decimal format.

That’s the reason we are using CSD algorithm for efficient multiplication- as the number

of stages or partial products terms are reduced the hardware requirement is also reduced

correspondingly which leads to reduction in area utilization.

24

3.3 CSD FLOW

3.3 FPM using CSD

25

CHAPTER 4
OVERVIEW OF FPGA AND EDA SOFTWARE

4.1 INTRODUCTION

 Developing a large FPGA –based system is an involved process that consists of

many complex transformations and optimization algorithms. Software tools are needed to

automate some of the tasks. We use Nexys4 Board which is a complete, ready-to- use

digital circuit development platform based on the latest Artix-7 Field Programmable Gate

Array (FPGA) (XC7A100T-ICSG324C) from Xilinx for synthesis and implementation,

and use the Vivado Design Suite for simulation.

 A Field Programmable Gate Array (FPGA) is a logic device that contains a two-

dimensional add shift of generic logic cells and programmable switches. A logic cell can

be programmed to perform a simple function, and a programmable switch can be

customized to provide interconnection among the logic cells.

 A custom design can be implemented by specifying the function of each logic

cell and selectively setting the connection of each programmable switch. Once the design

and synthesis arecompleted, we can use a simple adapter cable to download the desired

logic cell and switch configuration to the FPGA device and obtain the custom circuit.

Since this process can be done “in the field” rather than “in fabrication facility (fab),” the

device is known as field programmable.

4.2 OVERVIEW OF DIGILENT NEXYS4 BOARD

 The Nexys 4 DDR board is a complete, ready-to-use digital circuit

development platform based on the latest Artix-7™ Field Programmable Gate Array

(FPGA) from Xilinx®. With its large, high-capacity FPGA (Xilinx part number

XC7A100T-1CSG324C), generous external memories, and collection of USB, Ethernet,

and other ports, the Nexys4 DDR(Double Data Rate) can host designs ranging from

introductory combinational circuits to powerful embedded processors. Several built-in

peripherals, including an accelerometer, temperature sensor, MEMs digital microphone, a

26

speaker amplifier, and several I/O devices allow the Nexys4 DDR to be used for a wide

range of designs without needing any other components.

4.2.1 Features Of Nexys 4 DDR

• 15,850 logic slices, each with four 6-input LUTs(Look Up Tables) and 8 flip-

flops

• 4,860 Kbits of fast block RAM

• Six clock management tiles, each with phase-locked loop (PLL)

• 240 DSP slices

• Internal clock speeds exceeding 450 MHz

• On-chip analog-to-digital converter (XADC)

• 16 user switches

• USB-UART Bridge

• 12-bit VGA output

• 3-axis accelerometer

• 128MiB DDR2

• Pmod for XADC signals

• 16 user LEDs

• Two tri-colour LEDs

• PWM audio output

• Temperature sensor

• Serial Flash

• Digilent USB-JTAG port for FPGA programming and communication

• Two 4-digit 7-segment displays

• Micro SD card connector

• PDM microphone

• 10/100 Ethernet PHY

• Four Pmod ports

27

• USB HID Host for mice, keyboards and memory sticks

Fig 4.1 Nexys 4 DDR FPGA kit

4.2.2 Power Supplies

The Nexys4 DDR board can receive power from the Digilent USB-JTAG port (J6) or

from an external power supply. Jumper JP3 (near the power jack) determines which

source is used.

All Nexys4 DDR power supplies can be turned on and off by a single logic-level power

switch (SW16). A power-good LED (LD22), driven by the “power good” output of the

ADP2118 supply, indicates that the supplies are turned on and operating normally.

28

Table 4.1 Nexys 4 DDR power supplies

4.2.3 Memory

The Nexys4 DDR board contains two external memories: a 1Gib (128MiB) DDR2

SDRAM and a 128Mib (16MiB) non-volatile serial Flash device. The DDR2 modules are

integrated on-board and connect to the FPGA using the industry standard interface.

4.2.4 DDR2

The Nexys4 DDR includes one Micron MT47H64M16HR-25:H DDR2 memory

component, creating a single rank, 16-bit wide interface. It is routed to a 1.8V-powered

HR (High Range) FPGA bank with 50 ohm controlled single-ended trace impedance. 50

ohm internal terminations in the FPGA are used to match the trace characteristics.

Similarly, on the memory side, on-die terminations (ODT) are used for impedance

matching.

For proper operation of the memory, a memory controller and physical layer (PHY)

interface needs to be included in the FPGA design. There are two recommended ways to

do that, which are outlined below and differ in complexity and design flexibility.

29

4.2.5 Quad-SPI Flash

FPGA configuration files can be written to the Quad-SPI Flash (Spansion part number

S25FL128S), and mode settings are available to cause the FPGA to automatically read a

configuration from this device at power on. An Artix-7 100T configuration file requires

just less than four MiB (mebibyte) of memory, leaving about 77% of the flash device

available for user data. Or, if the FPGA is getting configured from another source, the

whole memory can be used for custom data.

4.2.6 Oscillators/Clocks

The Nexys4 DDR board includes a single 100 MHz crystal oscillator connected to pin E3

(E3 is a MRCC input on bank 35). The input clock can drive MMCMs or PLLs to

generate clocks of various frequencies and with known phase relationships that may be

needed throughout a design. Some rules restrict which MMCMs and PLLs may be driven

by the 100 MHz input clock. For a full description of these rules and of the capabilities of

the Artix-7 clocking resources, refer to the “7 Series FPGAs Clocking Resources User

Guide” available from Xilinx.

Xilinx offers the Clocking Wizard IP core to help users generate the different clocks

required for a specific design. This wizard will properly instantiate the needed MMCMs

and PLLs based on the desired frequencies and phase relationships specified by the user.

The wizard will then output an easy-to-use wrapper component around these clocking

resources that can be inserted into the user’s design. The clocking wizard can be accessed

from within the Project Navigator or Core Generator tools.

4.2.7 Pmod Ports

The Pmod ports are arranged in a 2×6 right-angle, and are 100-mil female connectors that

mate with standard 2×6 pin headers. Each 12-pin Pmod port provides two

3.3V VCC signals (pins 6 and 12), two Ground signals (pins 5 and 11), and eight logic

30

signals, as shown in Figure 20. The VCC and Ground pins can deliver up to 1A of

current.

Fig 4.3 PMOD ports

4.3 DEVELOPMENT FLOW

The simplified development flow of an FPGA-based system is shown below. The left

portion of the flow is the refinement and programming process, in which a system is

transformed from an abstract textual HDL description to a device cell- level configuration

and then downloaded to the FPGA device. The right portion is the validation process,

which checks whether the system meets the functional specification and performance

goals. The major steps in the flow are:

31

Fig 4.4 Development flow

a)Design Entry: Design the system and derive the HDL file(s). We may need to add a

separate constraint file to specify certain implementation constraints.

b)RTL Simulation: Develop the test bench in HDL and perform RTL(Register Transfer

Level) simulation. The RTL term reflects the fact that the HDL code is done at the

register transfer level.

 c)Synthesis: The synthesis process is generally known as logic synthesis, in which the

software transforms the HDL constructs to generic level components, such as simple

logic gates and FFs.

d)Implementation: The implementation process consists of three smaller processes:

translate map, and place and route. The translate process merges multiple design files to a

single netlist. The map process, which is generally known as technology mapping, maps

32

the generic gates in the netlist to FPGA logic cells and IOBs. The place and route

process, which is generally known as placement and routing, derives the physical layout

inside the FPGA chip. It places the cells in physical locations and determines routes to

connect various signals. In the Xilinx flow, static timing analysis, whichdetermines

various timing parameters, such as maximal propagation delay and maximal clock

frequency, is performed at the end of the implementation process.

e)Generate and download the programming file: In this process, a

configuration file is generated according to the final netlist. This file is downloaded to an

FPGA device serially to configure the logic cells and switches. The physical circuit can

be verified accordingly.

The optional functional simulation can be performed after synthesis, and the optional

timing simulation can be performed after implementation. Functional simulation uses a

synthesized netlist to replace the RTL description and checks the correctness of the

synthesis process. Timing simulation uses the final netlist, along with detailed timing

data, to perform simulation. Because of the complexity of the netlist, functional and

timing simulation may require a significant amount of time. If we follow good design and

coding practices, the HDL code will be synthesized and implemented correctly. We only

need to use RTL simulation to check the correctness of the HDL code and use static

timing analysis to examine the relevant timing information. Both functional and timing

simulations can be omitted from the development flow.

4.4 Overview of VERILOG

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to

model electronics systems. It is most commonly used in the design and verification of

digital circuits at the regular – transfer level of abstraction. It is also used in the

verification of analog circuits and mixed signal circuits HDL’s allows the design to be

simulated earlier in the design cycle in order to correct errors or experiment with different

33

architectures. Designs described in HDL are technology independent, easy to design and

debug, and are usually more readable than schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:

Algorithmic level (much like a code if, case and loop statements).

• Register transfer level (RTL uses registers connected by Boolean equations

• Gate level (interconnected AND, NOR etc.).

• Switch level (the switches are MOS transistors inside gates).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design

hierarchy, and communicate with other modules through a set of declared input,

output and bidirectional ports. Internally, a module can contain any combination of

the following: net/variable declarations (wire, reg, integer etc), concurrent and

sequential statement blocks and instances of other modules (sub – hierarchies).

4.4.1 Features of Verilog HDL

Verilog HDL offers many useful features for hardware design

• Verilog (verify logic) HDL is a general-purpose hardware description

language that is easy to learn and use. It is similar in syntax to the C

programming language. Designers with C programming experience will find it

easy to learn Verilog HDL.

• Verilog HDL allows different levels of abstraction to be mixed in the same

model. Thus, a designer can define a hardware model in terms of switches,

gates, RTL or behavioral code. Also, a designer needs to learn only one

language for stimulus and hierarchical design.

• Most popular logic synthesis tools support Verilog HDL. This makes it the

language of choice for designers.

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis

simulation. Thus, designing a chip in Verilog HDL allows the widest choice

of vendors.

34

• The programming language interface (PLI) is a powerful feature that allows

the user to custom C code to interact with the internal data structures of

Verilog. Designers can customize a Verilog HDL simulator to their need with

the Programming language interface (PLI).

4.4.2 Module Declaration

A module is the principal design entity in Verilog. The first line of a module declaration

specifies the name and port list (arguments). The next few lines specifies the I/O type

(input, output or inout) and width of each port. The default port width is 1 bit. Then the

port variables must be declared wire, reg. The default is wire. Typically, inputs are wire

since their data is latched outside the module. Outputs are type reg if their signals were

stored inside an always or initial block.

Syntax

Module model_name(port_list)

Input[msb:lsb] input_port_list;

Output[msb:lsb] output_port_list;

inout[msb:lsb] inout_port_list;

…………Statements…………….

endmodule

Example

module add_sub (add, in1, in2, out);

input add;

input [7:0]in, in2;

wire in1, in2;

output [7:0]out;

reg out;

…………..Statements…………

35

endmodule

Verilog has four levels of modeling:

1) The Switch level modeling.

2) Gate level modeling.

3) The Data flow level.

4) The Behavioral level.

1) Switch level modeling

Switch level modeling forms the basic level of modeling digital circuits. The switches are

available as a primitives in Verilog; they are central to design description at this level.

Basic gates can be defined in terms of such switches. Switch-level modeling is a recently

developed design and analysis methodology for MOS VLSI circuits. At the switch level,

important features of MOS circuits can be directly modeled using a moderate number of

discrete parameters, including switch states, resistance, capacitance, and bidirectional

signals. Switch-level models, provide more accurate behavioral and structural

information than gate-level logical models, while avoiding the high computational cost

associated with analog electrical models. It provides a level of abstraction between the

logic and analog-transistor levels of abstraction, describing the interconnection of

transmission gates which are abstractions of individual mos and cmos transistors. The

design of MOS technology electronic circuits requires functionallevel simulations, as

well as switch and circuit-level simulations. Functional simulations are necessary to

understand the behaviour independently of the implementation details.

36

Fig 4.5 CMOS inverter

2) Gate level modeling

Modeling done at this level is usually called gate level modeling as it involves gates and

has a one to one relation between a hardware schematic and

the Verilog code. Verilog supports a few basic logic gates known as primitives as they

can be instantiated like modules since they are already predefined. In general, gate-level

modeling is used for implementing lowest level modules in a design like, full-adder,

multiplexers, etc. Verilog HDL has gate primitives for all basic gates. Gate primitives are

predefined in Verilog, which are ready to use.Multiple input gate primitives include and,

nand, or, nor, xorand xnor. Designer should know the gate level diagram of the design.

Example

37

module or_gate (out, a, b, c, d);

input a, b, c, d;

wire x, y;

output out;

or or1(x, a, b);

or or2(y, c, d);

or orfinal(out, x, y);

endmodule

3) Data flow level modelling

Dataflow modeling provides the means of describing combinational circuits by their

function rather than by their gate structure. Dataflow modeling uses a number of

operators that act on operands to produce the desired results. Verilog HDL provides about

30 operator types.

Dataflow modeling uses continuous assignments and the keyword assign. A continuous

assignment is a statement that assigns a value to a net. The datatype net is used in Verilog

HDL to represent a physical connection between circuit elements. The value assigned to

the net is specified by an expression that uses operands and operators. As an example,

assuming that the variables were declared,a2-to-1 multiplexer with data inputs A and B,

select input S, and output Y is described with continuous assignment.

 assign Y= (A & S) | (B & S)

Example

The dataflow description of a 2-to-4-line decoder is shown in HDL below.

The circuit is defined with four continuous assignment statements using

Boolean expressions, one for each output. // Dataflow description of 2-to-4

line decoder with enable input (E) module decoder_df (A,B,E,D);

 input A,B,E;

 output [3,:0] D;

 assign D[3] =~(~A & ~B & ~E);

38

 assign D[2] =~(~A & B & ~E);

 assign D[1] =~(A & ~B & ~E);

 assign D[0] =~(A & B & ~E);

endmodule

4) Behavioral level modelling

This is the highest level of abstraction provided by Verilog HDL. A module can be

implemented in terms of the desired design algorithm without concern for the hardware

implementation details. It specifies the circuit in terms of its expected behavior.It

specifies the circuit in terms of its expected behaviour.It is the closest to a natural

language description of the circuit functionality, but also the most difficult to synthesize.

All that a designer need is the algorithm of the design, which is the basic information for

any design. This level simulates the behavioural level of the circuits and development

rate in this level is highest. Although the development rate in this abstraction level is high

there are some drawbacks such as the delay modeling is not possible. In practice any

circuit is first implemented in this level to understand the theoretical possibility of the

circuit and then it is implemented in at a lower level to analyse the practical aspects. This

level of Verilog has blocking and non-blocking assignment. Blocking assignment is

sequential nature and using the combination of both assignments, complex sequential can

be modeled with ease.

The abstraction in this modeling is as simple as writing the logic in C language. This is a

very powerful abstraction technique. All that a designer needs are the algorithm of the

design, which is the basic information for any design. This level is very important

because with the increasing complexity of digital design, it has become vitally important

to make wise design decisions early in a project. Designers need to be able to evaluate the

trade-offs of various architectures and algorithms before they decide on the optimum

architecture and algorithm to implement in hardware. Only after the high-level

architecture and algorithm are finalized, designers start focusing on building the digital

circuit to implement the algorithm. Most of the behavioural modeling is done using two

39

important constructs: initial and always. All the other behavioural statements appear only

inside these two structured procedure constructs.

Initial construct

The statements which come under the initial construct constitute the initial block. The

initial block is executed only once in the simulation, at time 0. If there are more than one

initial blocks, than all the initial blocks are executed concurrently. The initial construct is

used as follows:

Initial

Begin

Reset = 1'b0;

clk = 1'b1;

end

In the first initial block there is more than one statements hence they are written between

begin and end. If there is only one statement then there is no need to put begin and end.

Always construct

The statements which come under the always construct constitute thealways block. The

always block starts at time 0, and keepsonexecutingall the simulation time. It works like

an infinite loop. It is generally usedto model a functionality that is continuously repeated.

always

#5 clk = ~clk;

initial

clk = 1'b0;

The above code generates a clock signal clk, with a time period of 10units. The initial

blocks initiates the clk value to 0 at time 0. Then afterevery 5 units of time it is toggled,

hence we get a time period of 10units. This is the general way to generate a clock signal

40

for use in testbenches.

4.5 Overview of EDA (Electronic Design Automation) software

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis

of HDL designs, superseding Xilinx ISE with additional features for system on a

chip development and high level synthesis.

Setting up a vivado project involves the following steps-

Creating a New Project

After launching Vivado, from thestartup page click the “Create New Project” icon.

Alternatively, you can select File-> New project.

The New Project wizard will launch, click the “Next>” button to proceed.

https://en.wikipedia.org/wiki/System_on_a_chip

41

Enter a project name and select a project location. Make certain there are NO SPACES in

either! It’s not a bad idea to only use letters, numbers, and underscores as well. If

necessarysimply create a new directory for your Xilinx Vivado projects in your root drive

(e.g. C:/Vivado). You will likely always want to select the “create project sub-directory”

check-box as well. This keeps the things neatly organized with a directory for each

project and helps avoid problems. Click the “Next>" button to proceed.

42

Select the “RTL Project” radial and select “Do not specify sources at this time” check -

box. If you don’t select the check-box the wizard will take you through some additional

steps to optionally add pre existing items such as VERILOG or Verilog source files,

Vivado IP blocks, and .XDC constraint file for device pin amd timing configuration. For

this first project you will add necessary items later. Click the “Next>” button to proceed.

43

In case of Nexys 4 it’s Artix-7 chip that’s on the board, and we filter the specifications as

package -csg324, speed grade=(-1) shown will help you get to the correct device that’s

highlighted. Once you select the correct device click the “Next>” button to proceed.

44

Click the “Finish” button and Vivado will proceed to create your project as specified.

45

STEPS FOR DESIGN ENTRY/ IMPLEMENTATION
Working through the basic project flow

 The Vivado project window contains a lot of information,and the information

displayed can change depending on what part of the design currently have open as you

work through the steps of your project. Keep this in mind as you work through this guide,

because if you don’t see a specific sub window or sub window tab it’s possible you are’nt

in the correct part of the design.

 The “Flow Navigator” on the left side of the screen has all the major project phases

organised from top to bottom in their natural chronological order. You begin in the

“project manager”portion of the flow and the header at the top of the screen next to the

flow navigator reflects this.This header and the corresponded highlighted section in the

flow navigator will tell you which phase of the design you have opened.

Project Manager

Now click on “Add sources” under the project manager phase of the flow navigator.

Select the “Add or create design sources” radial and then click the “Next” button.

46

Click the “Create file”button or click the Green “+”symbol in the upper left corner and

select the “create file” option.

47

Make sure the options shown are selected in the “create source file”pop up, and for the

sake of following enter “blinky” for the file name. Click the ok button when finished.

Click the “finish button” and Vivado will then bring up the define module name.

You can use the “define module” window to automatically write some of the verilog

code. Additional “I/O definitions” can be added by either clicking the green “+”symbol in

the upper left or by simply clicking on the next empty line.

Note that if you would rather write your own code from scratch you can just simply click

the “cancel”button and Vivado will create a completely blank Verilog source file inside

your project.If you click the “OK” button without defining any “I/O definitions” Vivado

will still write the basic Verilog code structure but the port definition will be empty and

commented and you can write down the required remaining program.

STEPS FOR CONSTRAINTS FILE CREATION

Click on “Add sources” under the project manager phase of the Flow navigator.

Select the “Add or create constraints” radialand then click the “Next>”button

48

Then appears a popup asking for file name of the constraint file. Assign name to the

constraint file and make sure that there are no spaces! and then click “OK”.

49

Write the bit file according to the requirement.The required memory locations are

mapped to the program variables.

The above written bit file is for halfadder. The input variables a and b are mapped to

input switch locations and the output variables s,c are mapped to output LED locations.In

this way a bit file can be written according to our program requirements. We can also

access locations other than switches and LED’s like LCD display,clock,buttons and

Pmod Headers. The Pmod Headers are used for external interfacing.

After writing bit file click on “Run Implementation”

After successfully completing the implementation a pop up appears as follows

50

Click on “Generate Bitstream” and then “OK”.

This is an indication for completion of the generation of the bitstream which appears on

top right corner.

Now we have to connect to hardware device to target the device

Click on “Open Hardware Manager” and then “OK”

51

Click on “Open Target” to target a device.The Open New Hardware Target wizard will

launch,click the “Next>” button to proceed.

Select the “local server(target is on local machine)” from the drop down if it is’nt

already,and then click the “Next>”button to proceed. Vivado will work for a moment to

find any valid target devices connected to your local machine.

52

53

Select your specific Hardware device. Click the “Finish”button and Vivado will attempt

to connect to your specified hardware.Now click “Program device” under the program

and debug phase of the Flow Navigator and then your specific device from the menu that

appears.

After sometime the device will be programmed and the required outputs(LED’s) can be

obtained by varying the inputs(switches)

54

CHAPTER 5

RESULTS AND CONCLUSIONS

In this chapter various adders like carry look ahead adder,ripple carry adder and SPST

adder and various multipliers like vedic multipler,array multiplier and also combination

of adder and multiplier like vedic spst,Floating Point Multiplication(FPM) were

simulated using Xilinx vivado 2016.1 design suite and the results are presented.Synthesis

andimplementation is done using nexys 4 ddr board based on the artix 7field

programmable gate array(fpga) from Xilinx.Also the performance comparision

multipliers in terms of power are presented.

Fig 5.1(a) CLA Adder Simulation Report

55

Fig5.1(b) CLA Adder Power Report

Fig5.1(c) CLA Adder Synthesis Report

56

Fig 5.2(a) RCA Simulation Report

Fig 5.2(b) RCA Power Report

57

Fig 5.2(b) RCA Synthesis Report

58

Fig 5.3 (a) SPST Adder Simulation Report

Fig 5.3(b) SPST Power Report

59

Fig 5.3(c) SPST Synthesis Report

Fig 5.4(a) Vedic Multiplier Simulation Report

60

Fig 5.4(b) Vedic Multiplier Power Report

Fig 5.4(c) Vedic Multiplier Synthesis Report

61

Fig 5.5(a) Vedic Multiplier Using SPST Simulation Report

Fig 5.5(b) Vedic Using SPST Synthesis Report

62

Fig 5.5(c) VEDIC MULTIPLIER USING SPST POWER Report

Fig 5.6(a) Array Multiplier Simulation Report

63

Fig 5.6 (b) Array Multiplier Power Report

Fig 5.6(c) Array Multiplier Synthesis Report

64

Fig 5.7(a) FPM Simulation Report

Fig 5.7(b) FPM Power Report

65

Fig 5.7(c) FPM Synthesis Report

66

IMPLEMENTATION RESULTS

Fig 5.8 FPGA Trainer Kit and DAC Trainer Kit

67

Fig 5.9 Implementation of 4 Bit Multiplication

68

FIG 5.10 Implementation of 13-Bit Multiplication

69

Fig 5.11 Implementation of 16-Bit Multiplication

70

CONCLUSION

In digital signal processing multiplication is a key operation which determines the overall

performance of the multiplier. Using Floating point representation in multiplication

makes the operation accurate than using normal multiplication. In this project we have

performed floating point multiplication and analysed the power and synthesis results. We

have implemented various multipliers like Vedic multiplier, array multiplier etc and

compared their performance characteristics.

71

References

1. Jaiswal M. K., Hayden K.H.: “DSP48E Efficient Floating Point Multiplier

Architectures on FPGA”, international conference on VLSI Design and

Embedded Systems. pp.455-460,2017

2. Yogita B., Madhu Ch.: “A novel high-speed approach for 16x16 Vedic

multiplication with Compressor adders”, J. Computers and Electrical

Engineering. vol. 49, pp.39-49, 2016

3. Jaiswal M. K., Cheung R.C.C.: “VLSI Implementation of double-precision

floating point multiplier using Karatsuba Technique”, J. Circuits, Systems,

and Signal Processing, vol. 32, pp. 15- 27,2013

4. Aliparast P., Koozehkanani Z.D., Khiavi A.M., Karimian G., Bahar H.B.:

“A very high-speed CMOS 4-2 compressor using fully differential

current-mode circuit technique”, J. Analog Integrated Circuits and Signal

Processing, vol. 66, pp. 235-243,2011

5. Shiann-Rong K.: “Variable Latency Floating Point Multipliers for Low-

PowerApplications”, IEEE transactions on very large scale integration

(VLSI) systems, vol. 18, 2010.

6. Chang C.H., et.al.:“ Ultra low-voltage Low-power CMOS 4-2 and 5-2

Compressors for Fast Arithmetic Circuits,” Circuits and Systems I:Regular

Papers, IEEE Transactions on vol.51,pp.1985- 97,2004.

7. Swapna E.: “A Spurious Power Suppression technique for a low power

multiplier”, International Journal of Engineering Research

Technology(IETE), vol. 2, pp.1-5,2013

8. Ramalatha M., Deena Dayalan K., Dharani K., Deborah Priya S.: “High

Speed Energy Efficient ALU Design using vedic Multiplication

Techniques, ACTEA200

