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ABSTRACT 

 

 

 
Real time object detection is a vast, vibrant and complex area of computer vision. Ifthere is  a 

single object to be detected in an image, it is known as Image  Localization and ifthere are multiple  

objects in an image, then it is Object Detection. This detects the semanticobjects of a class in digital 

images and videos. The applications of real time object detectioninclude tracking objects, video 

surveillance, pedestrian detection, people counting, self-driving cars, face detection, ball tracking  in  

sports and many more. Convolution NeuralNetworks is a representative tool of Deep learning to detect 

objects using OpenCV(Opensource Computer Vision), which is a library of programming  functions 

mainly aimed at realtime computer vision. 

Keywords: Computer vision, Deep Learning, Convolution Neural Networks. 
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 Project Objective: 

The motive of object detection is to recognize  and locate all  known objects in a  scene.  Preferably in  

3D space, recovering pose of objects in 3D is very important for robotic control systems. 

 

Imparting intelligence to machines and making robots more  and  more autonomous  and  independent 

has been a sustaining technological dream for the mankind. It is our dream to let the robots take on 

tedious, boring, or dangerous work so that we can commit our time to more creative tasks.  

Unfortunately, the intelligent part seems to be still lagging behind. In real life, to achieve this goal, 

besides hardware development, we need the software that can enable robot the intelligence to do the  

work and act independently. One of the crucial components regarding this is vision, apart from other 

types of intelligences such as learning and cognitive thinking. A robot cannot be too intelligent if it 

cannot see and adapt to a dynamic environment. 

The searching or recognition process in real time scenario is very difficult. So far, no effective solution 

has been found for this problem. Despite a lot of research in this area, the methods developed so far are 

not efficient, require  long training time, are not suitable  for real time application,  and are not scalable  

to large number of classes. Object detection is relatively simpler if the machine is looking for detecting 

one particular object. However, recognizing all the objects inherently requires the skill to differentiate 

one object from the other, though they may be of same type. Such problem is very  difficult  for 

machines, if they do not know about the various possibilities of objects. 

 

 
 

 Motivation: 
 

Blind people do lead a normal life with their own style of doing things. But, they definitely face troubles 

due to inaccessible infrastructure and social challenges. The biggest challenge for a blind person, 

especially the one with the complete loss of vision, is to  navigate  around  places.  Obviously,  blind 

people roam easily around their house without any help because they know the position of everything in 

the house. Blind people have a tough time finding objects around them. . So we decided  to  make  a  

REAL TIME OBJECT DETECTION System. We are interested  in  this  project after we went through 

few papers in this area. As a  result we are  highly motivated to develop a system that recognizes objects  

in the real time environment 
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INTRODUCTION TO OBJECT DETECTION 

 

Object Detection is the process of finding and recognizing real-world object instances such as car, bike, 

TV, flowers, and humans out of an images or videos. An object detection technique lets you understand 

the details of an image or a video as it allows for the recognition, localization, and detection of multiple 

objects within an image. 

It is usually utilized in applications like image retrieval, security, surveillance, and advanced driver 

assistance systems (ADAS).Object Detection is done through many ways: 

 Feature Based Object Detection 

 Viola Jones Object Detection 

 SVM Classifications with HOG Features 

 Deep Learning Object Detection 

 

Object detection from a video in video surveillance applications is the major task these days. Object 

detection technique is used to identify required objects in video sequences and to cluster pixels of these 

objects. 

The detection of an object in video sequence plays a major role in several applications specifically as  

video surveillance applications. 

Object detection in a video stream can be done by processes like pre-processing, segmentation,  

foreground and background extraction, feature extraction. 

Humans can easily detect and identify objects present in an image. The human visual system is fast and 

accurate and can perform complex tasks like identifying multiple objects with little conscious thought. 

With the availability of large amounts of data, faster GPUs, and better algorithms,  we can now easily  

train computers to detect and classify multiple objects within an image with high accuracy. 
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 DIGITAL IMAGE PROCESSING 

 
Computerized picture preparing is a range portrayed by the requirement for broad test work to build  up 

the practicality of proposed answers for a given issue. A critical trademark hidden the plan of picture 

preparing frameworks is the huge level of testing and experimentation that 

Typically is required before touching base at a satisfactory arrangement. This trademark infors that the 

capacity to plan approaches and rapidly model hopeful arrangements by and large assumes a noteworthy 

part in diminishing the cost and time required to land at a suitableframework execution. 

 

 
 

WHAT IS DIP? 

 
A picture might be characterized as a two-dimensional capacity f(x, y), where x, y are spatial directions, 

and the adequacy off at any combine of directions (x, y) is known as the  power or dark level of the  

picture by then. Whenever x, y and the abundance estimation of are all limited discrete amounts, we call 

the  picture  a computerized picture. The field of DIP alludes to preparing advanced picture by methods  

for computerized PC. Advanced picture is made out of a limited number of components, each of which  

has a specific area and esteem. The components are called pixels. 

Vision is the most progressive of our sensor, so it is not amazing that picture play the absolute most 

imperative part in human observation. Be that as it may, dissimilar to people, who are constrained to the 

visual band of the EM range imaging machines cover practically the whole  EM range,  going from  

gamma to radio waves. They can work likewise on pictures produced by sources that people are not 

acclimated to partner with picture. 

There is no broad understanding among creators in regards to where picture handling stops and other 

related territories, for example,  picture examination and PC  vision begin. Now  and then a qualification  

is made by characterizing picture handling as a teach in which both the info and yield at a procedure are 

pictures. This is constraining and to some degree manufactured limit.  The range  of picture investigation  

is in the middle of picture preparing and PC vision. 

There are no obvious limits in the continuum from picture  handling toward one  side to finish vision at  

the other. In any case, one helpful worldview is to consider three sorts of mechanized procedures in this 

continuum: low, mid and abnormal state forms. Low-level process includes primitive operations, for 

example, picture preparing to decrease commotion differentiate upgrade  and  picture  honing.  A low- 

level process is described by the way that both its sources of info and yields are pictures. 

Mid-level process on pictures includes assignments, for example, division, depiction of that 
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Question diminish them to a frame reasonable for PC handling and characterization of individualarticles 

 
A mid-level process is portrayed by the way that its sources of info by and large are pictures however its 

yields are properties removed from those pictures. At long last more clevated amount handling includes 

"Understanding an outlet of perceived items, as in picture examination and at the farthest end of the 

continuum playing out the intellectual capacities typically connected with human vision. Advanced  

picture handling, as effectively characterized is utilized effectively in a wide scope of regions of 

outstanding social and monetary esteem. 

 

 

WHAT IS AN IMAGE? 

 
A picture is  spoken to as a two dimensional capacity f(x, y)  where x and y are spatial co-ordinates and  

the adequacy of "T" at any match of directions (x, y) is known as the power of the picture by then. 

 

 

 

 
Fig. 1.1 digital image 

 

 

 
Processing on image: 

 
Processing on image can be of three types They are low-level, mid-level, high level. 

 

 
 

Low-level Processing: 

 
 Preprocessing to remove noise. 

 Contrast enhancement. 

 Image sharpening. 
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Medium Level Processing : 

 
 Segmentation. 

 Edge detection 

 Object extraction. 

 

 
High Level Processing: 

 
 Image analysis 

 Scene interpretation 

 

 
Why Image Processing? 

 
Since the digital image is invisible, it must be prepared for viewing on one or more output device(laser 

printer, monitor at).The digital image can be optimized for the  application by enhancing the appearance  

of the structures within it. 

 

There are three of image processing used. They are 

 
 Image to Image transformation 

 Image  to Information transformations 

 Information to  Image transformations 
 
 

 
Fig. 1.2 Types of Image Processing 



13  

 

 

Pixel : 

 
Pixel is the smallest element of an image.  Each pixel correspond to any one  value. In an 8-bit gray  

scale image, the value of the pixel between 0 and 255.Each pixel store a value proportional to the light 

intensity at that particular location. It is indicated in either Pixels per inch or Dots per inch. 

 

 
Resolution : 

 
The resolution can be defined in many ways. Such as pixel resolution, spatial resolution, temporal 

resolution, spectral resolution.In pixel resolution, the term resolution refers to  the  total  number  of 

count of pixels in an digital image. For example, If an image has M rows and N columns, then its 

resolution can be defined as MX N. Higher is the pixel resolution, the higher is the  quality  of the  

image. 

 

Resolution of an image is of generally two types. 

 
• Low Resolution image 

 
• High Resolution 

 
Since high resolution is not a cost effective process It is not always possible to achieve high resolution 

images with low cost. Hence it is desirable Imaging. In Super Resolution imaging, with the help of 

certain methods and algorithms we can be able to produce high resolution images from the low  

resolution image from the low resolution images. 

 

 

 
GRAY SCALE IMAGE 

 
A gray scale picture is a capacity I (xylem) of the  two spatial directions of the picture  plane.  I(x,y)  is  

the force of the picture force of picture at the point (x, y) on the picture plane. I (xylem) take non-  

negative expect the picture is limited by a rectangle 

 

 COLOR IMAGE 

 
It can be spoken to by three capacities, R (xylem) for red, G (xylem) for green and B (xylem) for blue.   

A picture might be persistent as for the x and y facilitates and furthermore in adequacy. Changing over 
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such a picture to advanced shape requires that the directions and the adequacy to  be  digitized.  

Digitizing the facilitate’s esteems is called inspecting. Digitizing the adequacy esteems is called 

quantization. 

 

 

 

 RELATED TECHNOLOGY: 

 
R-CNN 

 
R-CNN is a progressive visual object detection system that combines bottom-up region proposals with 

rich options computed by a convolution neural network. 

R-CNN uses region proposal ways to  initial  generate potential bounding boxes in a  picture and then  

run a classifier on these proposed boxes. 

 

 

SINGLE SIZE MULTI BOX DETECTOR 

 
SSD discretizes the output space of bounding boxes into a set of default boxes over different aspect  

ratios and scales per feature map location.  At the time of prediction the network generates scores for   

the presence of each object category in each default box and generates adjustments to the box to better 

match the object shape. 

Additionally, the network combines predictions from multiple  feature maps  with different  resolutions 

to naturally handle objects of various sizes. 

ALEXNET 

 
AlexNet is a convolutional neural Network used for classification which has 5 Convolutional layers, 3 

fullyconnected layers and 1 softmax layer with 1000 outputs for classification as his architecture. 

YOLO 

 
YOLO is real-time object detection. It applies one neural network to the complete image dividing the 

image into regions and predicts bounding boxes and possibilities for every region. 

Predicted probabilities are the basis on which these bounding boxes are weighted. A single neural 

network predicts bounding boxes and class possibilities directly from full pictures in one evaluation. 

Since the full detection pipeline is a single network, it can be optimized end-to-end  directly  on  

detection performance. 
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VGG 

 
VGG network is another convolution neural network architecture used for image classification. 

 

 
MOBILENETS 

 
To build lightweight deep neural networks MobileNets are used. It is based on a  streamlined  

architecture that uses depth-wise separable convolutions. MobileNet uses 3×3 depth-wise separable 

convolutions that uses between 8 times less computation than standard convolution at solely a little 

reduction accuracy. Applications and use cases including  object  detection,  fine  grain classification, 

face attributes and large scale-localization. 

TENSOR FLOW 

 
Tensor flow is an open source software library for high performance numerical computation. It allows 

simple deployment of computation across a range of platforms (CPUs, GPUs, TPUs) due to its    

versatile design also from desktops to clusters of servers to mobile and edge devices. Tensor flow was 

designed and developed by researchers and engineers from the Google  Brain  team at intervals  

Google’s AI organization, it comes with robust support for machine learning and deep learning and the 

versatile numerical computation core is used across several alternative scientific domains. 

To construct, train and deploy Object Detection Models TensorFlow is used that makes it easy and 

also it provides a collection of Detection Models pre-trained on the COCO dataset, the Kitti dataset, 

and the Open Images dataset. One among the numerous Detection Models is that the combination of 

Single Shot Detector (SSDs) and Mobile Nets architecture that is quick, efficient and doesn't need 

huge computational capability to accomplish the object Detection. 

 

 APPLICATION OF OBJECT DETECTION 

 
The major applications of Object Detection are: 

 
FACIAL RECOGNITION 

 
“Deep Face” is a deep learning facial recognition system developed to identify human faces in a digital 

image. Designed and developed by a group of researchers in Facebook. Google also has its own facial 

recognition system in Google Photos, which automatically separates all the photos according to the 

person in the image. 

There are various components involved in Facial Recognition or authors could say  it  focuses  on  

various aspects like the eyes, nose, mouth and the eyebrows for recognizing a faces. 
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PEOPLE COUNTING 

 
People counting is also a part of object detection which can be used for various purposes like finding 

person or a criminal; it is used for analysing store performance or statistics of crowd during festivals. 

This process is considered a difficult one as people move out of the frame quickly. 

 

INDUSTRIAL QUALITY CHECK 

 
Object detection also plays an important role in industrial processes to identify or recognize products. 

Finding a particular object through visual examination could be a basic task that's involved in multiple 

industrial processes like sorting, inventory management, machining, quality management,  packaging  

and so on. Inventory management can be terribly tough as things are hard to trace in real time.  

Automatic object counting and localization permits improving inventory accuracy. 

 

SELF DRIVING CARS 

 
Self-driving is the future most promising technology to be used, but the working behind can be very 

complex as it combines a variety of techniques to perceive their surroundings, including radar,  laser 

light, GPS, odometer, and computer vision. Advanced control systems interpret sensory info to allow 

navigation methods to work, as well as obstacles and it. This is a big step towards Driverless cars as it 

happens at very fast speed. 

 

SECURITY 

 
Object Detection plays a vital role in the field of Security; it takes part in major fields such as face ID    

of Apple or the retina scan used in all the sci-fi movies. Government also widely use this application to 

access the security feed and match it with their existing database to find any criminals or to detecting 

objects like car number involved in criminal activities. The applications are limitless. 

 

 
 OBJECT DETECTION WORKFLOW AND FEATURE EXTRACTION 

 

Every Object Detection Algorithm works on the same principle and it’s just the working that differs  

from others. They focus on extracting features from the images that are given as the input at hands and 

then it uses these features to determine the class of the image. 
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 INTRODUCTION 

 

 
Deep learning is a machine learning technique. It teaches a computer to filter inputs through layers to 

learn how to predict and classify information. Observations can be in the form of images, text, or sound. 

The inspiration for deep learning is the way that the human brain filters information. Its purpose is to 

mimic how the human brain works to create some real magic. In the human brain, there are about 100 

billion neurons. Each neuron connects to about 100,000 of its neighbors. We’re kind of recreating that, 

but in a way and at a level that works for machines. In our brains,  a neuron has a body,  dendrites, and  

an axon. The signal from one neuron travels down the axon and transfers to the dendrites of the next 

neuron. That connection where the signal passes is called a synapse. Neurons by themselves are kind of 

useless. But when you have lots of them, they work together to create some serious magic. That’s the 

idea behind a deep learning algorithm! You get input from observation and you put your input into one 

layer. That layer creates an output which in turn becomes the input for the next layer, and so on. This 

happens over and over until your final output signal! The neuron (node) gets a signal or signals ( input 

values), which pass through the neuron. That neuron delivers the output signal. 

 

Think of the input layer as your senses: the things you see, smell, and feel, for example. These are 

independent variables for one single observation. This  information is  broken  down into numbers and 

the bits of binary data that a computer can use. You’ll need to either standardize or normalize these 

variables so that they’re within the same range. They use many layers of nonlinear processing units for 

feature extraction and transformation. Each successive layer uses the output of the previous layer for its 

input. What they learn forms a hierarchy of concepts. In this hierarchy, each level learns to transform its 

input data into a more and more abstract and composite representation. That means that  for an image,  

for example, the input might be a matrix of pixels. The first layer might encode the edges and compose 

the pixels. The next layer might compose an arrangement of edges. The next layer might encode a nose 

and eyes. The next layer might recognize that the image contains a face, and so on. 

 

What happens inside the neuron? 

 
The input node takes in information in a numerical form. The information is presented as an activation 

value where each node is given a number. The  higher the number, the greater the activation. Based on 

the connection strength (weights) and transfer function, the activation value passes to the next node.  

Each of the nodes sums the activation values that it receives (it calculates the weighted sum) and 

modifies that sum based on its transfer function. Next, it applies an activation function. An activation 
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function is a function that’s applied to this particular neuron. From that, the neuron understands if it 

needs to pass along a signal or not. 

 

Each of the synapses gets assigned weights, which are crucial to Artificial Neural Networks (ANNs). 

Weights are how ANNs learn. By adjusting the weights, the ANN decides to what extent signals get 

passed along. When you’re training your network, you’re deciding how the weights are adjusted. 

 

The activation runs through the network until it reaches the output nodes. The output nodes then give us 

the information in a way that we can understand. Your network will use a cost function to compare the 

output and the actual expected output. The model performance is evaluated by the cost function. It’s 

expressed as the difference between the actual value and the predicted value. 

 

There are many different cost functions you can use, you’re looking at what the error you have in your 

network is. You’re working to minimize loss function. (In essence, the lower the  loss function, the  

closer it is to your desired output). The information goes back, and the neural network begins to learn 

with  the  goal  of  minimizing  the  cost  function  by   tweaking   the   weights.   This   process   is   

called backpropagation. 

 

In forward propagation, information is entered into  the  input layer and propagates forward through  

the network to get our output values. We compare the values to our expected results. Next, we calculate 

the errors and propagate the info backward. This allows us to train the network and update the weights. 

(Backpropagation allows us to adjust all the weights simultaneously.) During this process,  because of  

the way the algorithm is structured, you’re able to adjust all of the weights simultaneously. This allows 

you to see which part of the error each of your weights in the neural network is responsible for. 

 

When you’ve adjusted the weights to the optimal level, you’re ready to proceed to the testing phase! 

 

 
How does an artificial neural network learn? 

 
There are two different approaches to get a program to do what you want. First, there’s the specifically 

guided and hard-programmed approach. You tell the program exactly what you want  it  to do.  Then 

there are neural networks. In neural networks, you tell your network the inputs and what you want for 

the outputs, and then you let it learn on its own. 
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By allowing the network to learn on its own, you can avoid the necessity of entering in all of the rules. 

You can create the architecture and then let it go and learn. Once it’s trained up, you can give it a new 

image and it will be able to distinguish output. 

 

 Feedforward and feedback networks 

 
A feedforward network is a network that contains inputs, outputs, and hidden layers. The signals can 

only travel in one direction (forward). Input data passes into a layer where calculations are performed. 

Each processing element computes based upon the weighted sum of its inputs. The new values become 

the new input values that feed the next layer (feed-forward). This continues through all the layers and 

determines the output. Feedforward networks are often used in, for example, data mining. 

 

A feedback network (for example, a recurrent neural network) has feedback paths. This  means that  

they can have signals traveling in both directions using loops. All possible  connections  between  

neurons are allowed. Since loops are present in this type of network, it becomes a non-linear dynamic 

system which changes continuously until it reaches a state of equilibrium. Feedback networks are often 

used in optimization problems where the network looks for the best arrangement of interconnected 

factors. 

 

 Weighted Sum 

 
Inputs to a neuron can either be features from a training set or outputs from the neurons of a previous 

layer. Each connection between two neurons has a unique synapse with a unique weight  attached.  If  

you want to get from one neuron to the next, you have to travel along the synapse and pay the “toll” 

(weight). The neuron then applies an activation function to the sum of the weighted inputs from each 

incoming synapse. It passes the result on to all the neurons in the next layer. When we talk about 

updating weights in a network, we’re talking about adjusting the weights on these synapses. 

 

A neuron’s input is the  sum of weighted outputs from all the neurons in the previous layer.  Each input  

is multiplied by the weight associated with the synapse connecting the input to the current neuron. If 

there are 3 inputs or neurons in the previous layer, each neuron in the current layer will have 3 distinct 

weights: one for each synapse. 

 

In a nutshell, the activation function of a node defines the output of that node. 



21  

 

 

 

The activation function (or transfer function) translates the input signals to output signals. It maps the 

output values on a range like 0 to 1 or -1 to 1. It’s an abstraction that represents the rate of action 

potential firing in the cell. It’s a number that represents the likelihood that the cell will fire. At it’s 

simplest, the function is binary: yes (the neuron fires) or no (the neuron doesn’t fire). The output can be 

either 0 or 1 (on/off or yes/no), or it can be anywhere in a range. If you were using a function that maps   

a range between 0 and 1 to determine the likelihood that an image is a cat, for example, an output of 0.9 

would show a 90% probability that your image is, in fact, a cat. 

 

 Activation function 

 
In a nutshell, the activation function of a node defines the output of that node. 

 

 
The activation function (or transfer function) translates the input signals to output signals. It maps the 

output values on a range like 0 to 1 or -1 to 1. It’s an abstraction that represents the rate of action 

potential firing in the cell. It’s a number that represents the likelihood that the cell will fire. At it’s 

simplest, the function is binary: yes (the neuron fires) or no (the neuron doesn’t fire). The output can be 

either 0 or 1 (on/off or yes/no), or it can be anywhere in a range. 

 

What options do we have? There are many activation functions, but these are the four very common 

ones: 

 

Thresholdfunction 

 
This is a step function. If the summed value of the input reaches a certain threshold the function passes 

on 0. If it’s equal to or more than zero, then it would pass on 1. It’s a very rigid, straightforward, yes or 

no function. 

 

Sigmoid function 

 
This function is used in logistic regression. Unlike the threshold function, it’s a smooth, gradual 

progression from 0 to 1. It’s useful in the output layer and is used heavily for linear regression. 
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Hyperbolic Tangent Function 

 
This function is  very similar to the sigmoid function. But unlike the sigmoid function which goes from 

0 to 1, the value goes below zero, from -1 to 1. Even though this isn’t a lot like what happens in a brain, 

this function gives better results when it comes to training neural networks. Neural networks sometimes 

get “stuck” during training with the sigmoid function. This happens when there’s a lot of strongly 

negative input that keeps the output near zero, which messes with the learning process. 

Rectifier function 

 
This might be the most popular activation function in the universe of neural networks. It’s the most 

efficient and biologically plausible. Even though it has a kink, it’s smooth and gradual after the kink at 

0. This means, for example, that your output would be either “no” or a percentage of “yes.” This  

function doesn’t require normalization or other complicated calculations. 

 

 
The field of artificial intelligence is essential when machines can do tasks that typically require human 

intelligence. It comes under the layer of machine learning, where machines can acquire skills and learn 

from past experience without any involvement of human. Deep learning  comes  under  machine  

learning where artificial neural networks, algorithms inspired by the human brain, learn from large 

amounts of data. The concept of deep learning is based on humans’ experiences; the deep learning 

algorithm would perform a task continuously so that it can improve  the  outcome.  Neural  networks 

have various (deep) layers that enable learning.  Any drawback that needs “thought” to work out could  

be a drawback deep learning can learn to unravel. 
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INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS (CNN) 

 

 

 
Artificial Neural Networks 

 
The idea of ANNs is based on the belief that working of human brain by making the right  

connections, can be imitated using silicon and wires as living neurons and dendrites. 

 

 
Fig: 4.1 

 
The human brain is composed of 86 billion nerve cells called neurons. They are connected to other 

thousand cells by Axons. Stimuli from external environment or inputs from sensory organs are 

accepted by dendrites. These inputs create electric impulses, which  quickly  travel  through  the  

neural network. A neuron can then send the message to other neuron to handle the issue or does not 

send it forward. 

ANNs are composed of multiple nodes, which imitate biological neurons of human brain.  The 

neurons are connected by links and they interact with each other. The nodes can take input data and 

perform simple operations on the data. The result of these operations is passed to other neurons. The 

output at each node is called its activation or node value. Each link is associated with weight. ANNs 

are capable of learning, which takes place by altering weight values. 

Neural network: 

 
A neural network is a network or circuit of neurons, or in a modern sense, an artificial  neural  

network, composed of artificial neurons or nodes. Thus a neural network  is  either  a  biological 

neural network, made up of real biological neurons, or an artificial neural network, for solving 

artificial intelligence (AI) problem. The connections of the biological neuron are  modeled  as  

weights. A positive weight reflects an excitatory connection, while negative values mean inhibitory 

connections. All inputs are modified by a weight and summed. This activity is referred as a linear 
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combination. Finally, an activation function controls the amplitude of the output. For example, an 

acceptable range of output is usually between 0 and 1, or it could be - 1 and 1. 

 

 

These artificial networks may be used for predictive modeling, adaptive control and applications 

where they can be trained via a dataset. Self-learning resulting from experience can occur within 

networks, 

which can derive conclusions from a complex and seemingly unrelated set of information. 
 

 
Fig. 4.2 A simple neural network 

 
A deep neural network (DNN) is an artificial neural network (ANN) with multiple layers between    

the input and output layers. The DNN finds the correct mathematical manipulation to turn the input 

into the output, whether it be a linear relationship or a non-linear relationship. 

 

 
 

 CONVOLUTIONAL NEURAL NETWORKS: 

 
Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous 

chapter: they are made up of neurons that have learnable weights and biases. Each neuron receives 

some inputs, performs a dot product and optionally follows it with a non-linearity. 

Convolutional Neural Networks (CNNs) are analogous to traditional ANNs in that they are 

comprised of neurons that self-optimise through learning. Each neuron will still receive an input 

and perform a operation (such as a scalar product followed by a non-linear function) - the basis of 

countless ANNs. From the input raw image vectors to the final output of the class score, the entire 

of the network will still express a single 
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perceptive score function (the weight). The last layer will contain loss functions associated with the 

classes, and all of the regular tips and tricks developed for traditional ANNs still apply. 

 

The only notable difference between CNNs and traditional ANNs is that CNNs are primarily used in 

the field of pattern recognition within images. This allows us to encode image-specific features into 

the architecture, making the network more suited for image-focused tasks - whilst further reducing 

the parameters required to set up the model. One of the largest limitations of traditional forms of 

ANN is that they tend to struggle with the computational complexity required to compute image 

data. Common machine learning benchmarking datasets such as the MNIST database of 

handwritten digits are suitable for most forms of ANN, due to its relatively small image 

dimensionality of just 28 × 28. With this dataset a single neuron in the first hidden layer will contain 

784 weights (28×28×1 where 1 bare in mind that MNIST is normalised to just black and white 

values), which is manageable for most forms of ANN. If you consider a more substantial coloured 

image input of 64 × 64, the number of weights on just a single neuron of the first layer increases 

substantially to 12, 288. Also take into account that to deal with this scale of input, the network will 

also need to be a lot larger than one used to classify colour-normalised MNIST digits, then you will 

understand the drawbacks of using such models. 

 
 

 
 CNN ARCHITECTURE: 

 
CNNs are feedforward networks in that information flow takes place in one  direction  only,  from 

their inputs to their outputs. Just as artificial  neural  networks (ANN) are biologically inspired,  so  

are CNNs. The visual cortex in the brain, which consists of alternating layers  of  simple  and  

complex cells (Hubel & Wiesel, 1959, 1962), motivates their architecture. 

CNN architectures come in several variations; however, in  general,  they consist of  convolutional  

and pooling (or subsampling) layers, which are grouped into modules. Either one or more fully 

connected layers, as in a standard feedforward neural network, follow these modules. Modules are 

often stacked on top of each other to form a deep model. It illustrates typical CNN architecture for a 

toy image classification task. An image is input directly to the network, and this is followed by  

several stages of convolution and pooling. Thereafter,  representations from  these  operations feed  

one or more fully connected layers. 

Finally, the last fully connected layer outputs the class label. Despite this  being the  most  popular 

base architecture found in the literature, several architecture changes have been proposed in recent 

years with the objective of improving image classification accuracy or reducing computation costs. 

Although for the remainder of this section, we merely fleetingly introduce  standard  CNN 

architecture. 
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Fig: 4.3 

 
 OVERALL ARCHITECTURE: 

 
CNNs are comprised of three types of layers. These are convolutional layers, pooling layers and fully-

connected layers. When these layers are stacked, a CNN architecture has been formed. A simplified 

CNN architecture for MNIST classification is illustrated in Figure 2. input  0  9  convolution w/ReLu 

pooling output fully-connected w/ ReLu fully-connected ... Fig. 2: An simple CNN architecture, 

comprised of just five layers The basic functionality of the example CNN above can be broken down 

into four key areas. 1. As found in other forms of ANN, the input  layer  will  hold the pixel values of 

the  image. 2. The convolutional layer will determine the output of neurons   of which are connected to 

local regions of the input through the calculation of the scalar product between their weights and the 

region connected to the input volume. The rectified linear unit (commonly shortened to ReLu) aims to 

apply an ’elementwise’  activation function such as sigmoid  to the output of the activation produced 

by the previous layer. 3. The pooling layer will then simply perform downsampling along the spatial 

dimensionality of the given input, further reducing the number of parameters within that activation. 4. 

The fully-connected layers will  then perform the  same duties found in standard ANNs and attempt to 

produce class scores from the activations, to be used for classification. It is also suggested that ReLu 

may be used between these layers,  as  to improve performance. Through this simple method of 

transformation, CNNs  are able to transform  the original input layer by layer using convolutional and 

downsampling techniques to produce class scores for classification and regression purposes. 

However, it is important to note that simply 
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understanding the overall architecture of a CNN architecture will not suffice. The creation and 

optimisation of these models can take quite some time, and can be quite confusing. We will now 

explore in detail the individual layers, detailing their hyperparameters and connectivities. 

 

 
 

 CONVOLUTIONAL LAYERS: 

 
The convolutional layers serve as feature extractors, and  thus they  learn the  feature representations 

of their input images. The neurons in the convolutional layers are arranged into feature maps. Each 

neuron in a feature map has a receptive field, which is connected to a neighborhood of  neurons  in  

the previous layer via a set of trainable weights, sometimes referred to as a filter bank. Inputs are 

convolved with the learned weights in order to compute a new feature  map,  and the  convolved 

results are sent through a nonlinear activation function. 

All neurons within a feature map have weights that are constrained to be equal; however, different 

feature maps within the same convolutional layer have different weights so that several features can  

be extracted at each location. 

As the name implies, the convolutional layer plays a vital role in how CNNs operate. The layers 

parameters focus around the use of learnable kernels. 

These kernels are usually small in spatial dimensionality, but spreads along the  entirety  of  the  

depth of the input. When the data hits a convolutional layer, the layer convolves each filter across    

the spatial dimensionality of the  input  to produce a 2D activation map.  These activation maps can  

be visualised. 

As we glide through the input, the scalar product is calculated for each value in that kernel.  From  

this the network will learn kernels that ’fire’ when they see a specific feature at a given spatial  

position ofthe input. These are commonly known as activations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig: 4.4 Visual representation of a convolutional layerz 

 

The centre element of the kernel is placed over the input vector, of which is then calculated and 

replaced with a weighted sum of itself and any nearby pixels. 

Every kernel will have a corresponding activation map, of which will be stacked along the depth 

dimension to form the full output volume from the convolutional layer. 

As we alluded to earlier, training ANNs on inputs such as images results in models of which are too 

big to train effectively. This comes down to the fullyconnected manner of stan  ard ANN neurons, 

so to mitigate against this every neuron in a convolutional layer is only connected to small region of 

the input volume. The dimensionality of this region is commonly referred to as the receptive  field  

size of the neuron. The magnitude of the connectivity through  the  depth is  nearly always equal to  

the depth of the input. 

For example, if the input to the network is an image of size 64 × 64 × 3 (aRGBcoloured image with    

a dimensionality of 64 × 64) and we set the receptive field size as 6 × 6, we  would have a total  of  

108 weights on each neuron within the convolutional layer. (6 × 6 × 3 where 3 is the magnitude of 

connectivity across the depth of the volume) To put this into perspective, a standard neuron seen in 

other forms of ANN would contain 12, 288 weights each. 

Convolutional layers are also able to significantly reduce the complexity of the model through the 

optimisation of its output. These are optimised through three hyperparameters, the depth, the stride 

and setting zero-padding. 

The depth of the output volume produced by the convolutional layers can be manually set through    

the  number of neurons within the layer to a the  same region of  the input.  This can be seen with  

other forms of ANNs, where the all of the neurons  in the  hidden layer are  directly connected to  

every single neuron beforehand. Reducing this hyperparameter can significantly minimise the total 

number of neurons of the network, but it can also significantly reduce the 

capabilities of the model. 

pattern recognition 



30  

 

 

 

We are also able to define the stride in which we set the depth around the spatial dimensionality of   

the input in order to place the receptive field. For example if we were to set a stride as 1, then we 

would have a heavily overlapped receptive field producing extremely  large  activations.  

Alternatively, setting the stride to a greater number will reduce the amount of overlapping and  

produce an output of lower spatial dimensions. 

Zero-padding is the simple process of padding the border of the input, and is an effective method to 

give further control as to the dimensionality of the output volumes. 

It is important to understand that through using these techniques, we will alter the spatial 

dimensionality of the convolutional layers output. 

Despite our best efforts so far we will still find that our models are still  enormous if  we  use  an 

image input of any real dimensionality. However, methods have been developed as to greatly curtail 

the overall number of parameters within the convolutional layer. 

Parameter sharing works on the assumption that if one region feature is useful to compute at a set 

spatial region, then it is likely to be useful in another region. If we constrain each individual  

activation map within the output volume to the same weights and bias, then we will see a massive 

reduction in the number of parameters being produced by the convolutional layer. 

As a result of this as the backpropagation stage occurs, each neuron in the output will represent the 

overall gradient of which can be totalled across the depth - thus only updating a  single  set  of 

weights, as opposed to every single one. 

 

 
 

Pooling Layers 

 
The purpose of the pooling layers is to reduce the spatial resolution of the feature maps and thus 

achieve spatial invariance to input distortions and translations. Initially, it was common practice to  

use average pooling aggregation layers to propagate the average of all the input values, of a small 

neighbourhood of an image to the next layer. However, in more recent models, max pooling 

aggregation layers propagate the maximum value within a receptive field to the next layer. 

Pooling layers aim to gradually reduce the dimensionality of the representation, and thus further 

reduce the number of parameters and the computational complexity of the model. 

The pooling layer operates over each activation map in the input, and scales its dimensionality using 

the “MAX” function. In most CNNs, these come in the form of max-pooling layers with kernels of 
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a dimensionality of 2 × 2 applied with a stride of 2 along the spatial dimensions of the input. This 

scales the activation map down to 25% of the original size - whilst maintaining the depth volume to  

its standard size. 

Due to the destructive nature of the pooling layer, there are only two generally observed methods of 

max-pooling. Usually, the stride and filters of the pooling layers are both set to 2 × 2, which will  

allow the layer to extend through the entirety of the spatial dimensionality of the input. Furthermore 

overlapping pooling may be utilised, where the stride is set to 2 with a  kernel size  set to 3. Due to  

the destructive nature of pooling, having a kernel size above 3 will usually greatly decrease the 

performance of the model. 

It is also important to understand that beyond max-pooling, CNN architectures may contain general- 

pooling. General pooling layers are comprised of pooling neurons that are able to perform  a  

multitude of common operations including L1/L2-normalisation,  and  average  pooling.  However, 

this tutorial will primarily focus on the use of max-pooling. 

 

 

Fully Connected Layers 

 
Several convolutional and pooling layers are usually stacked on top of each other to extract more 

abstract feature representations in moving through the network. The fully  connected  layers  that  

follow these layers interpret these feature representations and perform the function of high-level 

reasoning. . For classification problems, it is standard to use the softmax operator on top of a DCNN. 

While  early success was enjoyed by using radial basis functions  (RBFs), as the classifier on top of    

the convolutional towers found that replacing the softmax operator with a support vector machine 

(SVM) leads to improved classification accuracy. 

The fully-connected layer contains neurons of which are directly connected to the neurons in the two 

adjacent layers, without being connected to any layers within them. This is analogous to way that 

neurons are arranged in traditional forms of ANN. 

Despite the relatively small number of layers required to form a CNN, there is no set way of 

formulating a CNN architecture. That being said, it would be idiotic to simply throw a few of layers 

together and expect it to work. Through reading of related literature it is obvious that much like other 

forms of ANNs, CNNs tend to follow a common architecture. This common architecture is illustrated  

in Figure 2, where convolutional layers are stacked, followed by pooling layers in a repeated manner 

before feeding forward to fully-connected layers. 
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Convolutional Neural Networks differ to other forms of Artifical Neural Network in that instead of 

focusing on the entirety of the problem domain, knowledge about the specific type of input is  

exploited. This in turn allows for a much simpler network architecture to be set up. 

This paper has outlined the basic concepts of Convolutional Neural Networks, explaining the layers 

required to build one and detailing how best to structure the network in most image analysis tasks. 

Research in the field of image analysis using neural networks has somewhat slowed in recent times. 

This is partly due to the incorrect belief surrounding the level of complexity and knowledge required   

to begin modelling these superbly powerful machine learning algorithms. The authors hope that this 

paper has in some way reduced this confusion, and made the field more accessible to beginners. 

 

 

Training 

 
CNNs and ANN in general  use  learning algorithms to adjust their free parameters in order to attain   

the desired network output. The most common algorithm used for this purpose is backpropagation. 

Backpropagation computes the gradient of an objective function to determine how to adjust a  

network’s parameters in order to minimize errors that affect performance. A commonly experienced 

problem  with training CNNs, and in  particular DCNNs, is overfitting, which is poor performance on   

a held-out test set after the network is trained on a small or even large training set. This affects the 

model’s ability to generalize on unseen data and is a major challenge for DCNNs  that  can  be  

assuaged by regularization. 

 

 

 

Fig: 4.5 
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Caffe Model 

 
Caffe is a framework of Deep Learning and it was made used for the implementation and to access  

the following things in an object detection system. 

• Expression: Models and optimizations are defined as plaintext schemas in the caffe model unlike 

others which use codes for this purpose. 

• Speed: for research and industry alike speed is crucial for state-of-the-art models and massive data 

[11]. 

• Modularity: Flexibility and extension is majorly required for the new tasks and different settings. 

 
• Openness: Common code, reference models, and reproducibility are the basic requirements of 

scientific and applied progress. 

 

 

 

Types of Caffe Models 

 
Open Pose 

 
The first real-time multi-person system is portrayed by OpenPose which can  collectively  sight  

human body, hand, and facial keypoints (in total 130 keypoints) on single pictures. 

Fully Convolutional Networks for Semantic Segmentation 

 
In the absolutely convolutional networks (FCNs) Fully Convolutional Networks are the reference 

implementation of the models and code for the within the PAMI FCN and CVPR FCN papers. 

Cnn-vis 

 
Cnn-vis is an open-source tool that lets you use  convolutional neural  networks  to  generate images. 

It has taken inspiration from the Google's recent Inceptionism blog post. 

Speech Recognition 

 
Speech Recognition with the caffe deep learning framework. 

 
DeconvNet 

 
Learning Deconvolution Network for Semantic Segmentation. 
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Coupled Face Generation 

 
This is the open source repository for the Coupled Generative Adversarial Network (CoupledGAN or 

CoGAN) work.These models are compatible with Caffe master, unlike earlier FCNs that required a pre-

release branch (note: this reference edition of the models remains ongoing and not all  of the  models 

have yet been ported to master). 

Codes for Fast Image Retrieval 

 
To create the hash-like binary codes it provides effective framework for fast image retrieval. 

 
SegNet and Bayesian SegNet 

 
SegNet is real-time semantic segmentation architecture for scene understanding. 

 
Deep Hand 

 
It gives pre-trained CNN models. 

 
DeepYeast 

 
Deep Yeast may be an 11-layer convolutional neural network trained on biaural research pictures of 

yeast cells carrying fluorescent proteins with totally different subcellular localizations. 

Python VS other languages for Object Detection: Object detection may  be  a  domain-specific  

variation of the machine learning prediction drawback. Intel’s OpenCV library that   is implemented    

in C/C++ has its interfaces offered during a} very vary of  programming environments  like C#,  

Matlab, Octave, R, Python and then on. Why Python codes are much better option  than  other  

language codes for object detection are more compact and readable code. 

Python uses zero-based indexing. 

Dictionary (hashes) support provided. 

Simple and elegant Object-oriented programming 

Free and open 

Multiple functions can be package in one module 

 
More choices in graphics packages and toolsets Supervised learning also plays an important role. 

 
The utility of unsupervised pre-training is usually evaluated on the premise of what performance is 

achieved when supervised fine-tuning. This paper reviews and discusses the fundamentals of learning 
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as well as supervised learning for classification models, and also talks about the mini batch stochastic 

gradient descent algorithm that is used to fine-tune many of the models. 

Object Classification in Moving Object Detection Object classification works on the shape, motion, 

color and texture. The classification can be done under various  categories  like  plants,  objects, 

animals, humans etc. The key concept of object classification is tracking objects and analysing their 

features. 

Shape-Based 

 
A mixture of image-based and scene based object parameters such as  image  blob  (binary  large  

object) area, the as pectration of blob bounding box and camera zoom is given as input  to  this 

detection system. Classification is performed on the basis of the blob at each and every frame. The 

results are kept in the histogram. 

Motion-Based 

 
When an easy image is  given as an input  with no objects in motion,  this classification isn't required.  

In general, non- rigid articulated human motion shows a periodic  property;  therefore  this has been 

used as a powerful clue for classification of moving objects. based on this useful clue,  human  motion 

is distinguished from different objects motion. ColorBased- though color  isn't  an  applicable  live  

alone for police investigation and following objects, but the low process value of the colour primarily 

based algorithms makes the coloura awfully smart feature to be exploited. As an example, the color- 

histogram based technique is employed for detection of vehicles in period. Color bar chart describes  

the colour distribution in a very given region that is powerful against partial occlusions. 

Texture-Based 

 
The texture-based approaches with the assistance of texture pattern recognition work just like motion-

based approaches. It provides higher accuracy, by exploitation overlapping native distinction social 

control however might need longer, which may be improved exploitation some  quick  techniques. I. 

proposed WORK Authors have applied period object detection  exploitation  deep learning and 

OpenCV to figure to work with video streams and video files. This will be accomplished using the 

highly efficient open computer vision. Implementation of proposed strategy includes caffe- model based 

on Google Image Scenery; Caffe offers the model definitions, optimization settings, pre- trained 

weights[4]. Prerequisite includes  Python 3.7,  OpenCV 4 packages  and numpy to complete  this task of 

object detection.  NumPy is the elementary package for scientific computing with Python.   It contains 

among other things: a strong N-dimensional array object, subtle (broadcasting) functions tools for 

integrating C/C++ and fortran code, helpful linear algebra, Fourier transform, and random 
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number capabilities. Numpy works in backend to provide statistical information of resemblance of 

object with the image scenery caffemodel database. Object clusters can be created according to fuzzy 

value provided by NumPy. This project can detect live objects from the videos and images. 

LEARNING FEATURE HIERARCHY: 

 
Learn hierarchy all the way from pixels classifier One layer extracts features from output of previous 

layer, train all layers jointly 

Zero-One Loss 

 
The models given in these deep learning tutorials are largely used for classification. The major aim of 

training a classifier is to reduce the amount of errors (zero-one loss) on unseen examples 

Negative Log-Likelihood Loss 

 
Optimizing it for large models (thousands or millions of parameters) is prohibitively expensive 

(computationally) because the zero-one loss isn't differentiable. In order to achieve this maximization  

of  the log-likelihood is done on the classifier given all the labels in a training set [14].The likelihood   

of the correct class and number of right predictions is not the  equal,  but they are pretty similar from  

the point of view of a randomly initialized classifier. As the likelihood and zero-one loss are different 

objectives but we should always see that they are co-related on the validation set but sometimes one 

will rise while the other falls, or vice-versa. 

Stochastic Gradient Descent 

 
Ordinary gradient descent is an easy rule  within which we repeatedly create tiny steps downward on   

an error surface defined by a loss function of some parameters. For the  aim  of  normal  gradient 

descent we take into account that the training data is rolled into the loss function. Then  the  pseudo 

code of this algorithm can be represented as Stochastic gradient descent (SGD) works according to 

similar principles as random gradient descent (SGD) operates on the basis of similar principles as 

normal gradient descent. It quickly proceeds by estimating the  gradient from  simply a few examples  

at a time instead of complete training set. In its purest kind, we use simply one example at a time to 

estimate the gradient. 

Caffe is a deep learning framework or else we can say a library it's made with expression speed and 

modularity in mind they will put by Berkeley artificial intelligence  research and created by young  

King Gia there are many deep learning or machine learning frameworks for computer vision like 

tensorflow ,Tiano, Charis and SVM[2]. But why exactly we implement edition cafe there as on is its 

expressive architecture we can easily switch between CPU and GPU while training on GPU machine 
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modules and optimization for Our problem is defined by configuration without hard coding.  It  

supports extensible code since cafes are open source library. It is four foot by over twenty thous and 

developers and github since its birth it offers coding platform in extensible languages like Python and 

C++. The next reason is speed for training the neural networks speed is the primary constraint. Caffe 

can process over million images in a single day with the standard media GPU that is milliseconds per 

image. Whereas the same dataset of million images can take weeks for Tiana and Kara's Caffe is the 

fastest convolution neural network present community as mentioned earlier since its open  source 

library huge number of research arepowered by cafe and every single  day something new is coming  

out of it. 
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CHAPTER 5 

 
OPEN COMPUTER VISION 



 

 

 

5.1 INTRODUCTION 

 
OpenCV stands for Open supply pc Vision Library is associate open supply pc vision and machine 

learning software system library. The purpose of creation of OpenCV was to produce a standard 

infrastructure for computer vision applications and to accelerate the utilization of machine perception 

within the business product [6]. It becomes very easy for  businesses to utilize  and modify  the code  

with OpenCV as it is a BSD-licensed product. It is a rich wholesome libraby as it contains 2500 

optimized algorithms, which also includes a comprehensive set of both classic  and  progressive  

computer vision and machine learning algorithms. These algorithms  is used for various functions such  

as discover and acknowledging faces. Identify objects classify human actions. In videos, track camera 

movements, track moving objects. Extract 3D models of objects, manufacture 3D purpose clouds from 

stereo cameras, sew pictures along to provide a high-resolution image of a complete scene, find similar 

pictures from a picture information, remove red eyes from images that are clicked  with  the  flash,  

follow eye movements, recognize scenery and establish markers to overlay it with augmented reality. 

Officially launched  in  1999  the  OpenCV  project  was  initially  an Intel  Research initiative  to 

advance CPU-intensive applications, part of a series of projects including real-time ray tracing and 3D 

display walls The main contributors to the project included a number of optimization experts in Intel 

Russia, as well as Intel's Performance Library Team. In the early days of OpenCV, the goals of the 

project were describedas: 

 

 Advance vision research by providing not only open but also optimized code for basic vision 

infrastructure. No more reinventing the wheel. 

 Disseminate vision knowledge by providing a common infrastructure that developers could build  

on, so that code would be more readily readable and transferable. 

 Advance vision-based commercial applications by making portable, performance-optimized code 

available for free – with a license that did not require code to be open or free itself. 

The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer 

Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 

1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. 
 

The second major release of the OpenCV was in October 2009. OpenCV 2 includes major changes to   

the C++ interface, aiming at easier, more type-safe patterns, new functions, and better implementations 

for existing ones in terms of performance (especially on multi-core systems).  Official releases now  

occur every six months and development is now done by an independent Russian team supported by 

commercial corporations. 
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In August 2012, support for OpenCV was taken over by a non-profit foundation OpenCV.org, which 

maintains a developer and user site. 

On May 2016, Intel signed an agreement to acquire ITSEEZ, a leading developer of OpenCV. 

 

OpenCV (Open source computer vision) is a library of programming functions mainly aimed at real-  

time computer vision. Originally developed by Intel, it was later supported by Willow  Garage then  

Itseez  (which  was  later  acquired  by  Intel).  The  library  is cross-platform and  free  for  use  under  

the open-source BSD license. 

It has C++, Python, Java and MATLAB interfaces and supports Windows, Linux,  Android  and Mac  

OS. OpenCV leans mostly towards real-time vision applications and  takes advantage  of  MMX  and 

SSE instructions when available. A full-featured CUDAandOpenCL interfaces are being actively 

developed right now. 

There are over 500 algorithms and about 10 times as many functions that compose or support those 

algorithms. OpenCV is written natively in C++ and has a templated interface that  works  seamlessly  

with STL containers. 

 

 
OpenCV's application areas include : 

 

 2D and 3D feature toolkits 

 

Egomotion estimation 

 

 Facial recognition system 

 

 Gesture recognition 

 

 Human–computer interaction (HCI) 

 

 Mobile robotics 

 

 Motion understanding 

 

 Object identification 

 

 Segmentation and recognition 

 

 Stereopsis stereo vision: depth perception from 2 cameras 

 

 Structure from motion (SFM) 

 

 Motion tracking 

 

 Augmented reality 



41  

 

 

 

To support some of the above areas, OpenCV includes a statistical machine learning library  that  

contains : 

 Boosting Decision tree learning 

 Gradient boosting trees 

 

 Expectation-maximization algorithm 

 

 k-nearestneighbor algorithm 

 

 Naive Bayes classifier 

 

 Artificial neural networks 

 

   Random forest 

 

   Random forest 

 

 Support vector machine (SVM) 

 

 Deep neural networks (DNN) 

 
Libraries in OpenCV 

Numpy: 

NumPy is an acronym for "Numeric Python" or "Numerical Python". It is an open source extension 

module for Python, which provides fast precompiled functions for mathematical  and  numerical  

routines. Furthermore, NumPy enriches the programming language Python with  powerful  data 

structures for efficient computation of multi-dimensional arrays and matrices. The implementation is 

even aiming at huge matrices and arrays. Besides that the module supplies a large library of high-level 

mathematical functions to operate on these matrices and arrays. 

 

It is the fundamental package for scientific computing with Python. It contains various  features  

including these important ones: 

 

 A powerful N-dimensional array object Sophisticated (broadcasting) functions 

 
 Tools for integrating C/C++ and Fortran code 

 
Useful linear algebra, Fourier Transform, and random number capabilities. 
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Numpy Array: 

 
A numpy array is a grid of values, all of the same type, and  is indexed by a tuple of nonnegative  

integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers 

giving the size of the array along each dimension. 

 
SciPy: 

 
SciPy (Scientific Python) is often mentioned in the same breath with NumPy. SciPy extends the 

capabilities of NumPy with further useful functions for minimization, regression,  Fourier-  

transformation and many others. NumPy is based on two earlier Python modules dealing with arrays.  

One of these is Numeric. Numeric is like NumPy a Python module for high-performance, numeric 

computing, but it is obsolete nowadays. Another predecessor of NumPy is Numarray, which is a 

complete rewrite of Numeric but is deprecated as well. NumPy is a merger of those two, i.e. it is build   

on the code of Numeric and the features of Numarray. 

 

The Python Alternative To Matlab : 

 
Python in combination with Numpy, Scipy and Matplotlib can be used as a replacement for MATLAB. 

The combination of NumPy, SciPy and Matplotlib is a free (meaning both "free" as in "free beer" and 

"free" as in "freedom") alternative to MATLAB. Even though MATLAB has a huge number of  

additional toolboxes available, NumPy has the advantage that Python is a more modern and complete 

programming language and - as we have said already before - is open source. SciPy adds even more 

MATLAB-like functionalities to Python. Python is rounded out in the direction of MATLAB with the 

module Matplotlib, which provides MATLAB-like plotting functionality. 

 

 Haar Cascade Classifier in OpenCv 

 
The algorithm needs a lot of positive images (images of faces) and negative images (images without 

faces) to train the classifier. Then we need to extract features from it. For this, haar features shown in 

below image are used. They are just like our convolutional kernel. Each feature is a single  value  

obtained by subtracting sum of pixels under white rectangle from sum of pixels under black rectangle. 

 

Now all possible sizes and locations of each kernel is used to calculate plenty of features. (Just imagine 

how much computation it needs? Even a 24x24 window results over 160000 features). For each feature 

calculation, we need to find sum of pixels under white and black rectangles. To solve this, they 
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introduced the integral images. It simplifies calculation of sum of pixels, how large may be the number  

of pixels, to an operation involving just four pixels. Nice, isn‟t it? It makes things super-fast. 

 

But among all these features we calculated, most of them are irrelevant. For example,  consider the  

image below. Top row shows two good features. The first feature selected seems to focus  on the  

property that the region of the eyes is often darker than the region of the nose and cheeks. The second 

feature selected relies on the property that the eyes are darker than the bridge of the nose. But the same 

windows applying on cheeks or any other place is irrelevant. So how do we select the best features out   

of 160000+ features? It is achieved by Adaboost. 

 

For this, we apply each and every feature on all the training images. For each feature, it finds the best 

threshold which will classify the faces to positive and negative. But obviously, there will be errors or 

misclassifications. We select the features with minimum error rate, which means they are the features  

that best classifies the face and non-face images. (The process is not as simple as this. Each image is 

given an equal weight in the beginning. After each classification, weights of misclassified images are 

increased. Then again same process is done. New error rates are calculated. Also new weights. The 

process is continued until required accuracy or error rate is achieved or required number of features are 

found). 

 

Final classifier is a weighted sum of these weak classifiers. It is called weak because it alone can‟t 

classify the image, but together with others forms a strong classifier. The paper says even 200 features 

provide detection with 95% accuracy. Their final setup had around 6000 features. (Imagine a reduction 

from 160000+ features to 6000 features. That is a big gain). 

 

So now you take an image. Take each 24x24 window. Apply 6000 features to it. Check if it is face or  

not. Wow.. Wow..Isn‟t it a little inefficient and time consuming? Yes, it is. Authors have  a good  

solution for that. 

 

In an image, most of the image region is non-face region. So it is a better idea to have a simple method  

to check if a window is not a face region. If it is not, discard it in a single shot. Don‟t process it again. 

Instead focus on region where there can be a face. This way, we can find more time to check a possible 

face region 

 

For this they introduced the concept of Cascade of Classifiers. Instead of applying all the 6000 features 

on a window, group the features into different stages of classifiers and apply one-by-one.  (Normally  

first few stages will contain very less number of features). If a window fails the first stage, discard it.   

We don‟t consider remaining features on it. If it passes, apply the second stage of features and 
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continue  the  process.  The  window  which  passes  all   stages   is   a   face   region.   Haar-like   

features are digital image features used in object recognition. They owe their name to their intuitive 

similarity with Haar wavelets and were used in the first real-time face detector. 

Historically, working with only image intensities (i.e., the RGB pixel values at each and every pixel of 

image) made the task of feature calculation computationally expensive. A publication by Papageorgiou  

et al. discussed working with an alternate feature set based on Haar wavelets instead of the usual image 

intensities. Paul Viola and Michael Jones adapted the idea of using Haar wavelets and developed the so-

called Haar-like features. A Haar-like feature considers adjacent rectangular regions at a specific location 

in a detection window, sums up the pixel intensities in each region and  calculates  the  difference 

between these sums. This difference is then used to categorize subsections of an image. For example, 

with a human face, it is a common observation that among all faces the region of the eyes is darker than 

the region of the cheeks.  Therefore, a common Haar feature for face detection is a set of   two adjacent 

rectangles that lie above the eye and the cheek region. The position of these rectangles is defined relative 

to a detection window that acts like a bounding box to the target object (the face in this case). 

In the detection phase of the Viola–Jones object detection framework, a window of the target size is 

moved over the input image, and for each subsection of the image the Haar-like feature is calculated. 

This difference is then compared to a learned threshold that separates non-objects  from  objects.  

Because such a Haar-like feature is only a weak learner or classifier (its detection quality is slightly  

better than random guessing) a large number of Haar-like features are necessary to describe an object 

with sufficient accuracy. In the Viola–Jones object detection framework, the Haar-like features are 

therefore organized in something called a classifier cascade to form a strong learner or classifier. 

The key advantage of a Haar-like feature over most other features is its calculation speed.  Due  to the  

use of integral images, a Haar-like feature of any size can be  calculated  in  constant  time 

(approximately 60 microprocessor instructions for a 2-rectangle feature). 

 
Rectangular Haar-like features 

 

A simple rectangular Haar-like feature can be defined as the difference of the sum of pixels of areas 

inside the rectangle, which can be at any position and scale within the original image. This modified 

feature set is called 2-rectangle feature. Viola and Jones also defined 3-rectangle features and 4-  

rectangle features. The values indicate certain characteristics of a particular area of the image. Each 

feature type can indicate the existence (or absence) of certain characteristics  in  the  image,  such as 

edges or changes in texture. For example, a 2-rectangle feature can indicate where the border lies 

between a dark region and a light region. 
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Fast Computation of Haar-like features: 
 

One of the contributions of Viola and Jones was to use summed-area tables, which they called integral 

images. Integral images can be defined as two-dimensional lookup tables in the form of a matrix with   

the same size of the original image. Each element of the integral image contains the sum of all pixels 

located on the up-left region of the original image (in relation to the element's position). 

 

 

 

 

 

 

 

 

 

 

 
 

Sum= I(C) + I(A) – I(B) – I(D) 

 
Fig: 5.1 2-Rectangle feature 

 

 

 
 

OpenCV has a modular structure, which means that the package includes several shared or static 

libraries. The following modules are available: 

 

 Core functionality (core) - a compact module defining basic data structures, including the dense multi-

dimensional array Mat and basic functions used by all other modules. 

 Image Processing (imgproc) - an image processing module that includes linear and non-linear 

image filtering, geometrical ima 

table-based remapping), color sp 

e transformations (resize, affine and perspecti 

ce conversion, histograms, and so on. 

e warping, generic 

 Video Analysis (video) - a video analysis module that includes motion esti 

subtraction, and object tracking algorithms. 

ation, background 

 Camera Calibration and 3D Reconstruction (calib3d) - basic multiple-view geometry algorithms, 

single and stereo camera calibration, object pose estimation, stereo correspondence algorithms, and 

elements of 3D reconstruction. 

 2D Features Framework (featu es2d) - salient feature  detectors,  descriptors,  and  descriptor 

matchers. 

 Object Detection (objdetect) - detection of objects and instances of the predefined classes (for 

example, faces, eyes, mugs, people, cars, and so on). 

 High-level GUI (highgui) - an easy-to-use interface to simple UI capabilities. 
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 Video I/O (videoio) - an easy-to-use interface to video capturing and video codecs. 

 Some other helper modules, such as FLANN and Google test wrappers,  Python  bindings,  and  

others. 
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CHAPTER 6 

RESULTS AND 

DISCUSSIONS 
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INTRODUCTION TO IMPLEMENTATION OF PROBLEM 

 
The Model 

 
Deep learning is a popular technique used in computer vision. We chose Convolutional Neural Network 

(CNN) layers as building blocks to create our model architecture. CNNs are known to imitate how the 

human brain works when analyzing visuals. 

A typical architecture of a convolutional neural network contain an input layer, some  convolutional  

layers, some dense layers (aka. fully-connected layers), and an output layer . These are linearly stacked 

layers ordered in sequence. 

Input Layer 

 
The input layer has pre-determined, fixed dimensions, so the image must be pre-processed before it can  

be fed into the layer. We used OpenCV, a computer vision library, for object detection in the video. 

The OpenCV contains pre-trained filters and uses Adaboost to quickly find and crop the object. The 

cropped object is then converted into gray scale using cv2.cvtColor and resized to 48-by-48 pixels with 

cv2.resize. This step greatly reduces the dimensions compared to the original RGB format with three 

colour dimensions (3, 48, 48). The pipeline ensures every image can be fed into the input layer as a  (1,  

48, 48) numpy array. 

Convolutional Layers 

 
The numpy array gets passed into the Convolution2D layer where we  specify the number of filters  as  

one of the hyper parameters. The set of filters are unique with randomly generated weights.  Each filter,  

(3, 3) receptive field, slides across the original image with shared weights to create a feature map. 

Convolution generates feature maps that represent  how  pixel values are enhanced, for example,  edge  

and pattern detection. A feature map is created by applying filter 1 across the entire image. Other filters  

are applied one after another creating a set of feature maps. 

Pooling is a dimension reduction technique usually applied after  one or several convolutional  layers.  It  

is an important step when building CNNs as adding more convolutional layers can greatly affect 

computational time. We used a popular pooling method called MaxPooling2D that uses (2, 2) windows 

across the feature map only keeping the maximum pixel value. The pooled pixels form an image with 

dimentions reduced by 4. 
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Dense Layers 

 
The dense layer (aka fully connected layers), is inspired by the way neurons transmit signals through the 

brain. It takes a large number of input features and transform features through layers connected with 

trainable weights. 

These weights are trained by forward propagation of training data then backward propagation of  its  

errors. Back propagation starts from evaluating the difference  between prediction and true value, and  

back calculates the weight adjustment needed to every layer  before. We can control the training speed  

and the complexity of the architecture by tuning the hyper-parameters, such  as  learning  rate  and  

network density. As we feed in more data, the network is  able  to  gradually  make  adjustments until 

errors are minimized.Essentially, the more layers/nodes we add to the network the better it can pick up 

signals. 

 

 

Fig: 6.1 

 

 

 
As  good as it may sound, the model also becomes increasingly prone  to overfitting the  training data.  

One method to prevent overfitting and generalize on unseen data is to apply dropout. Dropout randomly 

selects a portion (usually less than 50%) of nodes to set their weights to zero during training. This    

method can effectively control the model's sensitivity to noise during training while maintaining the 

necessary complexity of the architecture. 
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Output layer 

 
The output layer in a CNN as mentioned previously is a fully connected layer, where the input from the 

other layers is flattened and sent so as the transform the output into the number of classes as desired  by  

the network. 

 

 
 

RESULTS 

Input Output 
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CONCLUSION: 

 
Deep learning based object detection has been a research hotspot in recent years. This project starts on 

generic object detection pipelines which provide base architectures for other related tasks. With the help  

of this the three other common tasks, namely object detection, face  detection and pedestrian detection,  

can be accomplished. Authors accomplished this by combing two things: Object detection with deep 

learning and OpenCV and Efficient, threaded video streams with OpenCV. The camera sensor noise and 

lightening condition can change the result as it can create problem in recognizing the object. The end  

result is a deep learning- based object detector that can process around 6-8 FPS. 
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Abstract— Real time object detection is a vast, vibrant and sophisticated area of computer vision aimed towards object 

identification and recognition. Object detection detects the semantic objects of a class objects using OpenCV (Open source Computer 

Vision), which is a library of programming functions mainly trained towards real time computer vision in digital images and videos. 

Visually challenged people cannot distinguish the objects around them. The main aim behind this real time object detection is to help 

the blind to overcome their difficulty. Real time object detection finds its uses in the areas like tracking objects, video surveillance, 

pedestrian detection, people counting, self-driving cars, face detection, ball tracking in sports and many more. This is achieved using 

Convolution Neural Networks, which is a representative tool of Deep learning. This project acts as an aiding tool for visually 

challenged people. 

 

 

Keywords: Convolutional Neural Network, OpenCV, Deep Learning. 

 

 

 

I. INTRODUCTION 
 

Object detection is a technology to detect various objects in digital images and videos too. It is mainly helpful within 

the self- driving cars, face detection, etc., where the objects are to be continuously monitored. The algorithm or the 

technique involved for object detection during this project is Convolutional Neural Networks which is a class of Deep 

learning. This uses MobileNet SSD technique during which MobileNet is a neural network used for image classification 

and recognition whereas SSD is a framework that is used to realize the multibox detector. The mixture of both MobileNet 

and SSD can do object detection. The main advantage or purpose of choosing Deep learning is that we do not need to do 

feature extraction from data as compared to machine learning. 

 

The Haar-like trait play a crucial role in detecting the objects in a picture. They scan the entire picture starting from the top 

left and compares every small box with the trained data. In this way, even small-detailed objects present within the images 

are identified. 

 

 

I II.  METHODOLOGY 
 

Deep learning, a subset of machine learning which in turn is a subset of artificial intelligence (AI) has networks capable of  

learning things from the data that is unstructured or unlabeled. The approach utilized in this project is Convolutional Neural 

Networks (CNN). It uses the Haar-cascade classifiers which help us in the detection of objects. 

 

 

1. CNN: 

 
The convolutional neural network, or CNN for brief, could also be a specialized kind of neural network model designed for 

working with two-dimensional image data, although they're going to be used with one-dimensional and three-dimensional 

data. 

 

Central the convolutional neural network is the convolutional layer that gives the network its name. This layer per forms an 

operation known as “convolution”. 

 

In the context of a convolutional neural network, a convolution may be a linear operation that involves the multiplication of  

a group of weights with the input, very similar to a standard neural network. as long as the technique was designed for two- 
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dimensional input, the multiplication is performed between an array of input file and a two-dimensional array of weights, 

called a filter or a kernel. 

 

The filter is smaller than the input file and therefore the before the sort of multiplication applied between a filter-sized patch 

of the input and the filter may be a scalar product. A scalar product is 

 

that the element-wise multiplication between the filter-sized patch of the input and filter, which is then summed, always 

leading to one value. Because it leads to 1 value, the operation is conventionally represented and mentioned because the 

“scalar product”. 

 

Using a filter smaller than the input is intentional because it allows an equivalent filter (set of weights) to be multiplied by 

the input array multiple times at distinct points on the input. Specifically, the filter is applied systematically to every 

overlapping part or filter-sized patch of the input file, left to right, top to bottom. 

 
 

 
Fig 1.1 Sample block diagram indicating the flow of image processing using CNN 

 
This systematic application of an equivalent filter across a picture may be a powerful idea. If the filter is meant to detect  a 

selected sort of feature within the input, then the appliance of that filter systematically across the whole input image 

allows the filter a chance to get that feature anywhere within the image. 

 

This capability is usually represented and mentioned as translation invariance, e.g. the total altogether concern in whether 

the feature is present instead of where it should had been present. 

 

 
 

 

 
Fig1.2. Image classification using CNN 

 

 

 

2. OpenCV: 

 
Open CV stands for open source computer vision. it's a group of libraries in Python. it's a tool by which we will be able 

to manipulate the pictures , like image scaling, etc. This supports and helps us in developing real time computing 

applications. It mainly concentrates and targets on image processing, video capture and analysis. It includes several 

features like face detection and also object detection. Currently OpenCV supports differing types of programming 

languages like C++, Python, Java etc., and it's available on various platforms including Windows, Linux, OS X, Android 

etc. 

CN
N 

Output 
Input 

image 
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3. Training the data set: 

 
The data set is typically the gathering of knowledge . the info set could also be collection of images or alphabets or 

numbers or documents and files too. the info set we used for the thing detection is that the collection of images of all the 

objects that are to be identified. Several different images of every and each object is typically present within the data set. If 

there are more number of images like each object within the datasets then the accuracy are often improved. The important 

thing that's to be remembered is that the info within the data set must be labelled. there'll be actually 3 data set. they're the 

training data set, the validation dataset and therefore the other one is testing data set. The training data set will usually  

contains around 85-90% of the entire labelled data. This training dataset are going to be training our machine and therefore 

the model is obtained by training the info set. The validation data set consists of around 5-10% of the entire labelled data. 

this is often used for the validation purpose. the opposite data set is that the testing dataset and it's wont to test the 

performance of our machine. 

 

 

4. Developing a real time object detector: 

 
For developing a true time object detector using deep learning and open cv we'd like to access our web cam during a 

really effective way then the thing detection is to be applied to each and every frame. we should always install open cv in 

our systems. 

 

The deep neural network module should be installed. 

 
Firstly, we should always always import all the specified packages: 

 
1. From imutils.video we'll import VideoStream 

 
2. From imutils.video we'll import FPS 

 
3. we'll import numpy as np 

 
4. we'll import argparse 

 
5. we'll import imutils 

 
6. we'll import time 

 
7. we'll import cv2 

 
The next step is to construct the argument parse then we should always parse the arguments. 

 
--prototxt: provide path to the Caffe prototxt file. 

 
--model: provide path to the pre-trained model. 

 
--confidence: The minimum probability threshold to filter weak detections. The default value is given as 20%. 

The next step is to initialize CLASS labels and corresponding random COLORS. 

Each object when it's detected, it's surrounded by a box with some predefined colour. Thus, we assign each object a 

specific color. 

 

After that we'll load our model and that we will provide the regard to our prototxt and also to our model files. 

 
With the assistance of imutils we'll read the video and that we will set the amount of frames per second. Now with this 

some predefined number of frames are going to be loaded per second. Each frame is analogous to the image. Now these 

images are going to be given because the inputs to the model. 

 

The model will process the input image and produces the output image which consists of labels. in additional practical 

sense the input raw image is given to the model. Now the model process the input image. within the output image all the 
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thing s are identified and every object is surrounded by an oblong box and therefore the name of the object is additionally 

displayed. we'll be only observing the output video stream but not the input video stream. 

 

 
 

III. RESULT 
 

Here, in this project we’ve considered around 15 to 20 objects to be detected during the training. Some of those include 

‘person’, ‘car’, ‘train’, ‘bird’, ‘sofa’, ‘dog’, ‘’plant’, ‘aero plane’, ‘bicycle’, ‘bus’, ‘motorbike’, etc. 

 

The output of this project displays the objects detected with a rectangular box around the object with a label indicating 

it’s name and therefore the exactness with which the object has been detected on the top of it. It can dig out any number 

of objects existing during a single image with certainty. 
 

 

Fig 1 

 

 
 

 

Fig 2 
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Fig 3 

 

 
 

 

Fig 4 

 

 

 

 
 

Fig 5 

 

 

 

IV. APPLICATIONS 
 

Here are a some of the future implementation of object detection. 

 
1. Face detections and recognition: 



59  

 

 

 
Face detection perhaps be a separate class of object detection. We wonder how some applications like Facebook, Faceapp, 

etc., detect and recognize our faces. this is often a sample example of object detection in our day to day life. Face detection 

is already in use in our lifestyle to unlock our mobile phones and for other security systems to scale back rate .  

 

2. Object tracking: 

 
Object detection is additionally utilized in tracking objects like tracking an individual and his actions, continuously 

monitoring a ball within the game of Football or Cricket. As there's an enormous interest for people in these games, these 

tracking techniques enables them to know it during a better way and obtain some additional information. Tracking of the 

ball is of maximal importance in any ball-based games to automatically record the movement of the ball and adjust the 

video frame accordingly. 

 

3. Self-driving cars: 

 
this is often one among the main evolutions of the planet and is that the best example why we'd like object detection. so as 

for a car to travel to the specified destination automatically with none human interference or to form decisions whether to 

accelerate or to use brakes and to spot the objects around it. this needs object detection. 

 

4. Emotions detection: 

 
this permits the system to spot the type of emotion the person puts on his face. the corporate Apple has already tried to use  

this by detecting the emotion of the user and converting it into a respective emoji within the smart phone. 

 

5. Biometric identification through retina scan: 

 
Retina scan through iris code is one among the techniques utilized in high security systems because it is one among the 

foremost accurate and unique biometric. 

 

6. Smart text search and text selection (Google lens) 

 
In recent times, we've encountered an application in smart phones called google lens. this will recognize the text and also 

images and search the relevant information within the browser without much effort. 

 

 
V. CONCLUSION 

 
Deep-learning based object detection has been a search hotspot in recent years. This project starts on generic object 

detection pipelines which give base architectures for other related tasks. With the assistance of this the 3 other common 

tasks, namely object detection, face detection and pedestrian detection, are often accomplished. Authors accomplished this 

by combing 2 things: Object detection with deep learning and OpenCV and Efficient, threaded video streams with 

OpenCV. The camera sensor noise and lightening condition can change the result because it can create problem in 

recognizing the objects. generally, this whole process requires GPU’s rather than CPU’s. But we’ve done using CPU’s and 

executes in much less time, making it efficient. Object Detection algorithms act as a mixture of both image classification 

and object localization. It takes the given image as input and produces the output having the bounding boxes adequate to 

the amount of objects present within the image with the category label attached to every bounding box at the highest. It 

projects the scenario of the bounding box up the shape of position, height and width. 
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