
MICROCONTROLLER AND

EMBEDDED SYSTEMS

LABORATORY MANUAL (ECE - 327)

III/IV ECE SEM - II

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES (A)

(Affiliated to AU, Approved by AICTE & Accredited by NBA) Sangivalasa-

531 162, Visakhapatnam District, Phone: 08933-225083/84/87

Dr. V. Rajya Lakshmi

Professor & HOD, ECE

By

Dr.S.Srinivas

Vision of the Institute

ANITS envisions to emerge as a world-class technical institution whose products represent a

good blend of technological excellence and the best of human values.

Mission of the Institute

To train young men and women into competent and confident engineers with excellent

communication skills, to face the challenges of future technology changes, by imparting

holistic technical education using the best of infrastructure, outstanding technical and

teaching expertise and an exemplary work culture, besides molding them into good citizens

 Anil Neerukonda Institute of Technology & Sciences (Autonomous)
(Affiliated to AU, Approved by AICTE & Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam District
Phone: 08933-225083/84/87 Fax: 226395

Website: www.anits.edu.in email: principal@anits.edu.in

http://www.anits.edu.in/
mailto:principal@anits.edu.in

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Vision of the Department

To become a centre of excellence in Education, research and produce high quality engineers

in the field of Electronics and Communication Engineering to face the challenges of future

technological changes.

Mission of the Department

To achieve vision department will

Transform students into valuable resources for industry and society by imparting

contemporary technical education.

Develop interpersonal skills and leadership qualities among students by creating an

ambience of academic integrity to participate in various professional activities

Create a suitable academic environment to promote research attitude among students.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

Program Educational Objectives (PEOs):

PEO1 : Graduates excel in their career in the domains of Electronics, Communication and

Information Technology.

PEO2 : Graduates will practice professional ethics and excel in professional career through

interpersonal skills and leadership qualities.

PEO3 : Graduates demonstrate passion for competence in higher education, research and

participate in various professional activities.

Program Outcomes (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one‟s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Program Specific Outcomes (PSOs):

PSO1 : Implement Signal & Image Processing techniques using modern tools.

PSO2 : Design and analyze Communication systems using emerging techniques.

PSO3 : Solve real time problems with expertise in Embedded Systems.

COURSE OUTCOMES

At the end of the course student will be able to

1. Program 8051 microcontroller to meet the requirements of the user

2. Interface peripherals like switches, LEDs, stepper motor, Traffic lights controller, etc..,

3. Apply concept & types of interrupts for the given context.

4. Design a microcontroller development board to meet the requirements of the user

Mapping of Course Outcomes with Program Outcomes:

 PO PSO

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO

1 3 2 2 2 3 1 1 1 2 2

2 3 2 2 2 3 1 1 1 3 2

3 3 2 2 2 3 1 1 1 2 2

4 3 2 2 2 3 2 1 1 1 1 3 3

3: high correlation, 2: medium correlation, 1: low correlation

MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY

ECE 327 Credits:2

Instruction: 3 Practical /Week Sessional Marks:50

End Exam: 3 Hours End Exam Marks:50

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY

LIST OF EXPERIMENTS

Sl.No NAME OF THE EXPERIMENT PAGE NO

 1. Study and familiarization of 8051 Microcontroller trainer kit 01

2. Assembly Language Program for addition of 8-bit numbers stored in an array 12

3. Assembly Language Program for Multiplication by successive addition of two 8-bit

numbers

14

4. Assembly Language Program for finding largest no. from a given array of 8-bit

numbers

17

5. Assembly Language program to arrange 8-bit numbers stored in an array in

ascending order.

19

6. Stepper motor control by 8051 Microcontroller 25

7. Interfacing of 8-bit ADC 0809 with 8051 Microcontroller 27

8. Interfacing of 8-bit DAC 0800 with 8051 Microcontroller and Waveform generation

using DAC.

29

9. Implementation of Serial Communication by using 8051 serial ports. 31

10. Assembly Language Program for use of Timer/C+6ounter for various applications 33

11. Traffic light controller/Real-time clock display 35

12. Simple test program using ARM 9 mini 2440 kit (Interfacing LED with ARM 9 mini

2440 kit)

38

13. MINIPROJECT: design an application on MC developer kit -

NOTE:
1. It is compulsory for each student to create their own Microcontroller Development Board

for personal use.

2. A student has to perform a minimum of 10 experiments.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

 Scheme of Evaluation

 (MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY)

Total marks for each student to evaluate in

lab: 100

Out of 100 marks:

1. External Evaluation: 50 marks

2. Internal Evaluation: 50 marks

a. Internal Lab exam: 20 marks

b. Continuous Evaluation : 30 marks

Internal Evaluation: 50M

I. Observation – 5M

 (Successful Wording/Algorithm/flowchart-1M, Successful

Program verification – 1M, Successful Program Execution – 1M,

Record Initial and Indexing – 2M)

II. Record – 10M

 (Aim&Apparatus – 1M, Theory – 3M, Algorithm/flowchart –

2M(each experiment should have atleast one flowchart, Calculations,

Input/Output observations & Result – 1M, Daily Performance 3M)

III. Lab Project – 10M

 (It is compulsory for each student to create their own

Microcontroller Development Board for personal use based on 8051)

IV. Attendance – 5M

V. Internal Lab Exam – 20M

 (Aim, Apparatus – 2M, Program – 10M (Mnemonics/code – 5M,

Relevant Comments – 2M, Algorithm/flow chart – 3M), Calculations,

Input/Output observations & Result – 5M, Performance – 3M)

External Evaluation: 50M
I. Write up – 10M

 (Aim– 2M, Apparatus – 1M, Theory – 2M, Algorithm/flowchart –

5M)

II. Program – 15M

 (Mnemonics/Code – 10M, Comments – 3M, Optimization– 2M)

III. Performance – 5M

 (Experimentation skill - Connections,.etc)

IV. Result – 10M

 (Identifying & Showing the inputs and outputs – 2M and/or

theoretical calculations – 2M, Output Verification – 6M (Partial output

– 3M, No Output – 0M)

V. Viva – 10M

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

RUBRICS

(MCES LABORATORY)

S.No Competency Performance Indicator

1 Demonstrate an ability

to conduct

experiments

consistent with their

level of knowledge

and understanding.

Laboratory preparation (verification of Lab observation)

Stating clearly the aim of the experiment, its scope and

importance for purpose of doing experiment.(Based on viva)

Experimental procedures (Based on contents in Lab

observation)

Ability to construct the circuit diagram on a bread board and

use meters/ instruments to record the measured data

according to the range selected.(Based on physical

observation)

2 Demonstrate an ability

to design experiments

to get the desired

output.

Finding the appropriate values of the components to meet the

specifications.

3 Demonstrate an ability

to analyze the data

and reach valid

conclusions.

Ability to gather materials and writing in lab record (Based

on lab record)

S.No Performance

Indicator

Excellent (A)

100%

Good(B)

80%

Need

improvement

(C)

60%

Fail (D)

<40%

1 Laboratory

preparation

 (verification of

Lab observation)

(5M)

Read and understand

the lab manual before

coming to lab.

Observations are

completed with

necessary theoretical

calculations

including the use of

units and significant

figures

Analyze data

for trends and

correlations,

stating

possible

errors and

limitations in

choosing the

component

values.

Observations

are

incomplete

No effort

exhibited

2 Experimental

procedures

Conclusions of

the lab

experiment

performed.

(Based on

physical

observation,

contents of lab

Clearly describes the

purpose of doing

experiment and its

scope. Follow the

given experimental

procedures, to obtain

the desired output.

Able to correlate the

theoretical concepts

with the concerned

Tabulate data

(tabular form

or in graphical

form) from

the results so

as to facilitate

analysis and

explanations

of the data,

and draw

Some idea of

doing

experiment

but not very

clear. Lacks

the

appropriate

knowledge of

the lab

procedures.

No effort

exhibited

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

record,

viva)(5M)

lab results with

appropriate reasons

conclusions.

Follow the

given

experimental

procedures,

but obtained

results with

some errors.

Able to

correlate the

theoretical

concepts with

the concerned

lab results

with some

difficulties.

Has no idea

what to do

Not able to

correlate the

theoretical

concepts with

the concerned

lab results

3 Ability to write a

code and verify

its output.(Based

on physical

observation)(5M)

Able to perform tasks

accurately without

assistance , obtain

the stimuli after

calculations

Able to

perform tasks

with some

Difficulties,

obtain the

correct stimuli

for only few

components

after

calculations

Poor in

performing

tasks without

assistance,

obtain the

incorrect

stimuli.

No effort

exhibited

4 Presentation of

record

(Based on Lab

record)(5M)

Well-organized,

interesting, confident

presentation of

record

Presentation

of record

acceptable

Presentation

of record

lacks clarity

and organized

No effort

exhibited

5 Oral Presentation

(Based on

Viva)(5M)

Responds

confidently, and

precisely in giving

answers to questions

correctly

Responds in

giving

answers to

questions but

some answers

are wrong.

Responds in

giving

answers to

questions but

all answers

are wrong.

No effort

exhibited

The objective of this lab is to impart skill (both Programming-Assembly level & Hardware)

in designing microcomputer systems. This Lab has 8085, 8086 microprocessor trainer kits

and 8051 micro controller trainer kits along with interfacing modules to demonstrate the

detailed applications of microprocessors& microcontrollers.

The facilities in the laboratory enable students to build a firm background in microcomputer

hardware as well as software. Students learn about assembly language programming, memory

and I/O design, interfacing of programmable chips and peripherals such as stepper motors,

analog – to – digital and digital – to – analog converters etc.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

LIST OF MAJOR EQUIPMENT IN MP & MC LABORATORY

 TOTAL EXPENDITURE OF THE LABORATORY: Rs. 10,75,309.97/-

S.NO NAME OF THE EQUIPMENT MAKE QUANTITY

1. Intel 8085 Microprocessor kits ESA 23

2. 8086 Microprocessor kits ESA 15

3. 8051 Microcontroller kits ESA 15

4. Universal Programmer

 (iup-uxp)

ESA 01

5. 20MHz Dual trace Oscilloscopes APLAB 04

6. PC Systems HCL 12

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

Microprocessors and Microcontrollers Laboratory

 Do’s

1. Proper dress code has to be maintained while entering in to the Lab.

2. Students should carry observation notes and record completed in all aspects.

3. Assembly level program and its theoretical result should be there in the observation

before coming to the next lab.

4. Student should be aware of next ALPs.

5. Students should be at their concerned desktop/bench, unnecessary moment is

restricted.

6. Student should follow the procedure to start executing the ALP they have to get

signed by the Lab instructor for theoretical result then with the permission of Lab

instructor they need to switch on the desktop and after completing the same they need

to switch off and keep the chairs properly.

7. After completing the ALP Students should verify the ALP by the Lab Instructor.

8. The Practical Result should be noted down into their observations and result must be

shown to the Lecturer In-Charge for verification.

9. Students must ensure that all switches are in the OFF position, desktop is shut down

properly.

 Don’ts

1. Don‟t come late to the Lab.

2. Don‟t leave the Lab without making proper shut down of desktop and keeping the

chairs properly.

3. Don‟t leave the Lab without verification by Lab instructor.

4. Don‟t leave the lab without the permission of the Lecturer In-Charge.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Anil Neerukonda Institute of Technology & Sciences (Autonomous)

Sangivalasa-531 162, Bheemunipatnam Mandal, Visakhapatnam

1

1. STUDY OF 8051 MICROCONTROLLER TRAINER KIT

Aim
To study the 8051 microcontroller trainer kit

Architecture of 8051 Microcontroller

Architecture of 8051 microcontroller has following features

 4 Kb of ROM is not much at all.

 128Kb of RAM (including SFRs) satisfies the user's basic needs.
 4 ports having in total of 32 input/output lines are in most cases sufficient to make all

necessary connections to peripheral environment.

The whole configuration is obviously thought of as to satisfy the needs of most

programmers working on development of automation devices. One of its advantages is that

nothing is missing and nothing is too much. In other words, it is created exactly in

accordance to the average user„s taste and needs. Other advantages are RAM organization,

the operation of Central Processor Unit (CPU) and ports which completely use all recourses

and enable further upgrade.

2

Pin out Description
Pins 1-8: Port 1each of these pins can be configured as an input or an output.

Pin 9: RSA logic one on this pin disables the microcontroller and clears the contents of most

registers. In other words, the positive voltage on this pin resets the microcontroller. By

applying logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3Similar to port 1, each of these pins can serve as general input or output.
Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous

communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous

communication clock output.

Pin 12: INT0Interrupt 0 inputs.

Pin 13: INT1Interrupt 1 input.

Pin 14: T0Counter 0 clock input.

Pin 15: T1Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

Pin 17: RD Read from external RAM.

3

Pin 18, 19: X2, X1Internal oscillator input and output. A quartz crystal which specifies

operating frequency is usually connected to these pins. Instead of it, miniature ceramics

resonators can also be used for frequency stability. Later versions of microcontrollers operate

at a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2If there is no intention to use external memory then these port pins are

configured as general inputs/outputs. In case external memory is used, the higher address

byte, i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of

64Kb is not used, which means that not all eight port bits are used for its addressing, the rest

of them are not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it

every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower

address byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the

ALE pin, the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the

state of P0 and uses it as a memory chip address. Immediately after that, the ALU pin is

returned its previous logic state and P0 is now used as a Data Bus. As seen, port data

multiplexing is performed by means of only one additional (and cheap) integrated circuit. In

other words, this port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no regard to whether there is internal memory or not. It means that even

there is a program written to the microcontroller, it will not be executed. Instead, the program

written to external ROM will be executed. By applying logic one to the EA pin, the

microcontroller will use both memories, first internal then external (if exists).

Pin 32-39: Port 0Similar to P2, if external memory is not used, these pins can be used as

general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE

pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC+5V power supply.

Input/Output Ports (I/O Ports)

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured as
inputs or outputs. Accordingly, in total of 32 input/output pins enabling the microcontroller to
be connected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends
on its logic state. In order to configure a microcontroller pin as an input, it is necessary to

apply a logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate pin
will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a
logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V (as

4

is the case with any TTL input). This may seem confusing but don't loose your patience. It all
becomes clear after studying simple electronic circuits connected to an I/O pin.

Memory Organization

The 8051 has two types of memory and these are Program Memory and Data Memory.

Program Memory (ROM) is used to permanently save the program being executed, while

Data Memory (RAM) is used for temporarily storing data and intermediate results created

and used during the operation of the microcontroller. Depending on the model in use (we are

still talking about the 8051 microcontroller family in general) at most a few Kb of ROM and

128 or 256 bytes of RAM is used.

All 8051 microcontrollers have a 16-bit addressing bus and are capable of addressing 64 kb

memory. It is neither a mistake nor a big ambition of engineers who were working on basic
core development. It is a matter of smart memory organization which makes these

microcontrollers a real “programmers‟ goody“.

Special Function Registers (SFRs)

Special Function Registers (SFRs) are a sort of control table used for running and monitoring

the operation of the microcontroller. Each of these registers as well as each bit they include,

has its name, address in the scope of RAM and precisely defined purpose such as timer

control, interrupt control, serial communication control etc. Even though there are 128

memory locations intended to be occupied by them, the basic core, shared by all types of

8051 microcontrollers, has only 21 such registers. Rest of locations is intentionally left

5

unoccupied in order to enable the manufacturers to further develop microcontrollers keeping
them compatible with the previous versions. It also enables programs written a long time ago
for microcontrollers which are out of production now to be used today.

Program Status Word (PSW) Register

PSW register is one of the most important SFRs. It contains several status bits that reflect the
current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two
register bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be
automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit
and receive via serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255
andcannot be stored in one register. Overflow condition causes the OV bit to be set (1).
Otherwise, it will be cleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register
banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four
banks of RAM.

6

RS1

RS2

Space in RAM

 0 0 Bank0 00h-07h

 0 1 Bank1 08h-0Fh

 1 0 Bank2 10h-17h

 1 1 Bank3 18h-1Fh

F0 - Flag 0. This is a general-purpose bit available for use.

AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift
instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two separate
registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated

as a 16-bit register or as two independent 8-bit registers. Their 16 bits are primarly used for
external memory addressing. Besides, the DPTR Register is usually used for storing data and

intermediate results.

7

Stack Pointer (SP) Register

A value stored in the Stack Pointer points to the first free stack address and permits stack

availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops
decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the Stack

Pointer, which means that the space of RAM reserved for the stack starts at this location. If
another value is written to this register, the entire Stack is moved to the new memory

location.

P0, P1, P2, P3 - Input/Output Registers

If neither external memory nor serial communication system are used then 4 ports within

total of 32 input/output pins are available for connection to peripheral environment. Each bit
within these ports affects the state and performance of appropriate pin of the microcontroller.

Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa,
voltage on a pin reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be

configured as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured
as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon

reset and power-on, all port bits are set (1), which means that all appropriate pins will be

configured as inputs.

Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As

the frequency of this oscillator is precisely defined and very stable, pulses it generates are

always of the same width, which makes them ideal for time measurement. Such crystals are

also used in quartz watches. In order to measure time between two events it is sufficient to

count up pulses coming from this oscillator. That is exactly what the timer does. If the timer

is properly programmed, the value stored in its register will be incremented (or decremented)

with each coming pulse, i.e. once per each machine cycle. A single machine-cycle instruction

lasts for 12 quartz oscillator periods, which means that by embedding quartz with oscillator

frequency of 12MHz, a number stored in the timer register will be changed million times per

second, i.e. each microsecond.

The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest,
their main purpose is to measure time and count external events. Besides, they can be used
for generating clock pulses to be used in serial communication, so called Baud Rate.

8

Timer T0

As seen in figure below, the timer T0 consists of two registers – TH0 and TL0 representing a
low and a high byte of one 16-digit binary number.

Accordingly, if the content of the timer T0 is equal to 0 (T0=0) then both registers it consists

of will contain 0. If the timer contains for example number 1000 (decimal), then the TH0
register (high byte) will contain the number 3, while the TL0 register (low byte) will contain

decimal number 232.

Formula used to calculate values in these two registers is very simple:

TH0 × 256 + TL0 = T

Matching the previous example it would be as follows:

3 × 256 + 232 = 1000

Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535. In case
of exceeding this value, the timer will be automatically cleared and counting starts from 0.
This condition is called an overflow. Two registers TMOD and TCON are closely
connected to this timer and control its operation.

9

TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers T0 and T1. As seen in
figure below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 -
bit7) refer to the timer 1. There are 4 operational modes and each of them is described
herein.

Bits of this register have the following function:

 GATE1 enables and disables Timer 1 by means of a signal brought to the INT1 pin

(P3.3):
o 1- Timer 1 operates only if the INT1 bit is set.
o 0- Timer 1 operates regardless of the logic state of the INT1 bit.

 C/T1 selects pulses to be counted up by the timer/counter 1:
o 1 - Timer counts pulses brought to the T1 pin (P3.5).o

0- Timer counts pulses from internal oscillator.

 T1M1,T1M0 These two bits select the operational mode of the Timer 1.

 T1M1 T1M0 Mode Description

 0 0 0 13-bit timer

 0 1 1 16-bit timer

1

0

2

 8-bit auto-

reload

 1 1 3 Split mode

 GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin
(P3.2):o 1- Timer 0 operates only if the INT0 bit is set.
o 0- Timer 0 operates regardless of the logic state of the INT0 bit.

 C/T0 selects pulses to be counted up by the timer/counter 0:
o 1 - Timer counts pulses brought to the T0 pin (P3.4).o

0- Timer counts pulses from internal oscillator.

 T0M1,T0M0 These two bits select the oprtaional mode of the Timer 0.

 T0M1 T0M0 Mode Description

 0 0 0 13-bit timer

 0 1 1 16-bit timer

 1 0 2 8-bit auto-reload

 1 1 3 Split mode

10

Timer Control (TCON) Register

TCON register is also one of the registers whose bits are directly in control of
timer operation.
 Only 4 bits of this register are used for this purpose, while rest of them is used for
interrupt control to be discussed later.

 TF1 bit is automatically set on the Timer 1 overflow.

 TR1 bit enables the Timer 1.

o 1 - Timer 1 is enabled.
o 0 - Timer 1 is disabled.

 TF0 bit is automatically set on the Timer 0 overflow.

 TR0 bit enables the timer 0.
o 1 - Timer 0 is enabled.
o 0 - Timer 0 is disabled.

Timer 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means that
they have the same function, their operation is controlled by the same registers TMOD and
TCON and both of them can operate in one out of 4 different modes.

Result:

Thus the 8051 Architecture has been studied.

11

Viva questions:

1) Compare and contrast the microprocessor and microcontroller.

2) How to change the register bank?

3) Name different Timer modes?

4) What is bit addressable ram and registers?

5) List the 16 bit registers.

6) What are the special registers in 8051 microcontroller?

7) Difference between timer and counter

8) How to switch between timer modes

9) How to change the baud rate?

10) What is the clock frequency?

12

2. ADDITION/SUBTRACTION OF 8-BIT NUMBERS USING 8051

Aim:
To do the addition/subtraction operations using 8051 microcontroller

Apparatus required:
8051 microcontroller kit
DAC interface kit

Keyboard

Algorithm:

Addition / Subtraction
Move 1

H
 data to memory

Step 1 :

Step 2 : Add or subtract 1
H
 data with 2

nd
 data

Step 3 : Initialize data pointer.

Step 4 : Move result to memory pointed by DPTR.

START

Out 1
H
 data in memory

Add or subtract 1
H
 and 1

st
 data

Initialize DPTR

Move result to memory preset by DPTR

Stop

Program: 8-bit Addition:

Memory Label Opcode Mnemonics Comments

Location

4100 Start C3 CLR C Clear the carry flat

4101 74DA MOV A, #01 Moves data 1 to

 register A

4103 24DA ADD A, #02 Add content of A and

 data 2 and store in A

4105 464500 MOV DPTR,#4500 Moves data 4500 to

 DPTR

4108 F0 MOVX @DPTR,A Moves control of A to

 location pointed DTPR

4109 80 FE SJMP 4109 Short jump to 4109

13

Execution:

Addition:

ML Input ML Output

4103

 4500

4109

Program: 8-bit Subtraction:

Memory Label Opcode Mnemonics Comments

Location

4100 Start C3 CLR C Clear the carry flat

4101 74DA MOV A,#05 Moves data 1 to

 register A

4103 24DA SUBB A,#02 Subtract data 2 from
 content of A and store

 result in A

4105 464500 MOV DPTR,#4500 Moves 4500 to DPTR

4108 F0 MOVX @DPTR,A Moves result by

 location by DTPR

4109 80 FE SJMP 4109 Short jump to 4109

Execution:

Subtraction:
ML Input
4101
4103

ML Output

4500

Result:
Thus 8-bit addition/subtraction is performed using 8051.

Viva questions:

1) What are the arithmetic instructions?

2) How to perform higher byte arithmetic operations?

3) What are the flags involved in addition?

4) Explain multiplication and division

5) How to check the parity?

6) How to check the zero state?

7) Compare add and increment instruction.

8) How to perform signed arithmetic?

9) What is the role of psw in arithmetic operations?

10) How to check different conditions?

14

3. MULTIPLICATION/DIVISION OF 8-BIT NUMBERS USING 8051

Aim:
To do the multiplication/division operations using 8051 microcontroller

Apparatus required:
8051 microcontroller kit
DAC interface kit

Keyboard

Algorithm:

Multiplication / Division
Get 1

H
 data and 2

nd
 data to memory

Step 1 :

Step 2 : Multiply or divide 1
H
 data with 2

nd
 data

Step 3 : Initialize data pointer.

Step 4 : Move result to memory pointed by DPTR (first port)

Step 5 : Increment DPTR

Step 6 : Move 2
nd

 part of result to register A

Step 7 : Move result to 2
nd

 memory location pointer byDPTR

 START

Get data into the register

Complement the data

Move the data to pointer by DPTR

 Increment data

 Increment DPTR

 Move data into paste location

 Short jump to preset location

 Stop

15

Program: 8-bit Multiplication:

Memory Label Opcode Mnemonics Comments

Location

4100 Start 7403 MOV A,#03 Move immediate data
 to accumulator

4101 75F003 MOV B,#02 Move 2
nd

 data to B
 register

4105 A4 MUL AB Get the product in A &

 B

4106 904500 MOV DPTR, # 4500 Load data in 4500
 location

4109 F0 MOVX @DPTR,A Move A t ext RAM

410A INC DPTR

410B E5F0 MOV A,B Move 2
nd

 data in A

410D F0 MOVX @DPTR,A Same the ext RAM

410E 80FE SJMP 410E Remain idle in infinite

 Loop

Execution:

Multiplication:
ML Input
4101
4103

Program: 8-bit Division:

Memory Label Opcode Mnemonics Comments

Location

4100 Start 7408 MOV A,#04 Move immediate data
 to accumulator

4102 75F002 MOV B,#02 Move immediate to B

 reg.

4105 84 DIV AB Divide content of A &

 B

4106 904500 MOV DPTR, # 4500 Load data pointer with
 4500 location

4109 F0 MOVX @DPTR,A Move A to ext RAM

410A A3 INC DPTR Increment data pointer

410B ESF0 MOV A,B Move remainder to A

410D F0 MOVX @DPTR,A Move A to ext RAM

410E 80FE SJMP 410E Remain idle in infinite
 Loop
Execution:

Division:
ML Input
4101
4103

Output Address Value

4500

Output Address Value

4500

16

Result:

Thus 8-bit multiplication and division is performed using 8051.

Viva questions:

1) What are the arithmetic instructions?

2) How to perform higher byte arithmetic operations?

3) What are the flags involved in addition?

4) Explain multiplication and division

5) How to check the parity?

6) How to check the zero state?

7) Compare add and increment instruction.

8) How to perform signed arithmetic?

9) What is the role of PSW in arithmetic operations?

10) How to check different conditions?

17

4. LARGEST ELEMENTS IN AN ARRAY

Aim:
Write an assembly language program to find the biggest number in an array of 8-bit

unsigned numbers of predetermined length.

Apparatus required:
8051 Microcontroller kit
(0-5V) DC battery

Algorithm:
1. Initialize pointer and counter.
2. Load internal memory location 40H as zero.

3. Move the first element of an array to r5 register.
4. Compare the data stored in memory location 40H is equal to or less than the

value of first element of an array.
5. If it is lesser, then move the data of first element to 40H memory location

ELSE increment pointer and decrement counter.
6. Check the counter. If counter is not equal to zero, repeat from the 2

nd

step else Move the R5 register to 40H memory location.
7. Stop the program.

Program:

Memory Label Opcode Mnemonics Comments

Location

4100 90 42 00 MOV DPTR,#4200H

4103

 MOV 40H,#00H

75 40 00

4106

7D 0A MOV R5,#0AH

4108

LOOP2: E0 MOVX A,@DPTR

4109

B5 40 08 CJNE A,40H,LOOP1

410C

LOOP 3 A3 INC DPTR

410D

DD F9 DJNZ R5,LOOP2

410F

E5 40 MOV A,40H

4111

F0 MOVX @DPTR,A

4112 HLT 80 FE SJMP HLT

18

4114 LOOP1 40 F6 JC LOOP3

4116 F5 40 MOV 40H,A

4118 80 F2 SJMP LOOP3

SAMPLE INPUT AND OUTPUT:

INPUT:

Memory address Data

4200

OUTPUT:

Memory address Data

Result:
Thus the assembly language program was written to find the largest element in an

array and executed using 8051 microcontroller.

 Viva questions:

1) How to access external memory?

2) How to access data memory?

3) How to store and access the array of numbers?

4) What is sorting?

5) Which flags get affected in sorting?

6) How to change the array order?

19

5. SORTING OF DATA-ASCENDING ORDER AND DESCEDING ORDER

AIM:

To arrange an array of 8-bit unsigned numbers of known length in an ascending order and
descending order.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Initialize the register and data pointer.

2. Get first two elements in registers A &B.
3. Compare the two elements of data. If value of B register is high then exchange

A & B data else increment pointer and decrement register R3.
4. Check R3 is zero, and then move the register R5 & R6.

5. Again increment pointer and decrement R4,

6. Check R4 is zero. If no repeat the process from step 2.

7. Otherwise stop the program.

Program:

Memory Label Opcode Mnemonics Comments

Location

4100

7B 04
MOV R3,#4

4102

7C 04
MOV R4,#4

4104 90 45 00 MOV DPTR,#4500

4107 REPT 1: AD 82 MOV R5,DPL

4109 AE 83 MOV R6, DPH

410B E0 MOVX A,@DPTR

410C F5 FO MOV B,A

410E REPT A3 INC DPTR

410F E0 MOVX A,@DPTR

4110 F8 MOV R0,A

4111 C3 CLR C

4112 95 F0 SUBB A,B

4114 50 13 JNC CHKNXT

4116 EXCH C0 82 PUSH DPL

20

4118 C0 83 PUSH DPH

411A 8D 83 MOV DPL,R5

411C 8E 83 MOV DPH,R6

411E E8 MOV A,R0

411F F0 MOVX @DPTR,A

4120 D0 83 POP DPH

4122 D0 82 POP DPL

4124 E5 F0 MOV A,B

4126 F0 MOVX @DPTR,A

4127 88 F0 MOV B,R0

4129 CHKNXT: DBE3 DJNZ R3,REPT

412B 1C DEC R4

412C EC MOV A,R4

412D

FB
MOV R3,A

412E OC INC R 4

412F 8D 82 MOV DPL,R5

4131 8E 83 MOV DPH,R6

4133 A3 INC DPTR

4134 DC D1 DJNZ R4,REPT1

4136 80 FE SJMP HLT

Algorithm:

1. Initialize the register and data pointer.

2. Get first two elements in registers A &B.
3. Compare the two elements of data. If value of B register is low then exchange A

& B data else increment pointer and decrement register R3.
4. Check R3 is zero, and then move the register R5 & R6.

5. Again increment pointer and decrement R4,

6. Check R4 is zero. If no repeat the process from step 2.

7. Otherwise stop the program.

21

Program for Descending:

Memory Label Opcode Mnemonics Comments

Location

4100

7B 04
MOV R3,#4

4102

7C 04
MOV R4,#4

4104 90 45 00 MOV DPTR,#4500

4107 REPT 1: AD 82 MOV R5,DPL

4109 AE 83 MOV R6, DPH

410B E0 MOVX A,@DPTR

410C F5 FO MOV B,A

410E REPT A3 INC DPTR

410F E0 MOVX A,@DPTR

4110 F8 MOV R0,A

4111 C3 CLR C

4112 95 F0 SUBB A,B

4114 50 13 JC CHKNXT

4116 EXCH C0 82 PUSH DPL

4118 C0 83 PUSH DPH

411A 8D 83 MOV DPL,R5

411C 8E 83 MOV DPH,R6

411E E8 MOV A,R0

411F F0 MOVX @DPTR,A

4120 D0 83 POP DPH

4122 D0 82 POP DPL

4124 E5 F0 MOV A,B

22

4126 F0 MOVX @DPTR,A

4127 88 F0 MOV B,R0

4129 CHKNXT: DBE3 DJNZ R3,REPT

412B 1C DEC R4

412C EC MOV A,R4

412D

FB
MOV R3,A

412E OC INC R 4

412F 8D 82 MOV DPL,R5

4131 8E 83 MOV DPH,R6

4133 A3 INC DPTR

4134 DC D1 DJNZ R4,REPT1

4136 80 FE SJMP HLT

SAMPLE INPUT AND OUTPUT ASCENDING

INPUT:

 Memory address Data

23

OUTPUT:

Memory address Data

SAMPLE INPUT AND OUTPUT

DESCENDING INPUT:

Memory address Data

24

OUTPUT:

Memory address Data

Result:

 Thus the assembly language program was written to sort the data in an
ascending/descending order and executed using 8051 microcontroller.

Viva questions:

1) How to access external memory?

2) How to access data memory?

3) How to store and access the array of numbers?

4) What is sorting?

5) Which flags get affected in sorting?
 6) How to change the array order?

25

6. SPEED CONTROL OF STEPPER MOTOR

Aim:
To write an assembly program to make the stepper motor run in forward and reverse

direction.

Apparatus required:

Stepper motor
8051 microcontroller kit

(0-5V) power supply

Algorithm:

1. Fix the DPTR with the Latch Chip address FFC0
2. Move the values of register A one by one with some delay based on the

2-Phase switching Scheme and repeat the loop.
3. For Anti Clockwise direction repeat the step 3 by reversing the value

sequence.
4. End the Program

Memory Label Opcode Mnemonics Comments

Location

4100 90 FF C0 MOV DPTR, #FFC0

4103 74 09 MOV A, #09

4105 E0 MOVX @DPTR, A

4106 12 41 3B LCALL DELAY

4109 74 05 MOV A, #05

410B E0 MOVX @DPTR, A

410C 12 41 3B LCALL DELAY

410F 74 06 MOV A, #06

411B E0 MOVX @DPTR, A

411C 12 41 3B LCALL DELAY

411F 74 0A MOV A, #0A

412B E0 MOVX @DPTR, A

412C 12 41 3B LCALL DELAY

26

412F SJMP 412F

413B DELAY

413B L2 MOV R0, #55

413D L1 MOV R1, #FF

413F DJNZ R1, L1

413B DJNZ R0, L2

413D RET

Result:
Thus an assembly language program to control of stepper motor was

executed successfully using 8051 Microcontroller kit.

Viva questions:

1. What is the principle on which electromagnetic relays operate?

2. What are DPDT relays?

3. Why do we need a ULN2803 in driving a relay?

4. Why are solid-state relays advantageous over electromechanical relays?

5. What are optoisolators?

6. How can we control the speed of a stepper motor?

7. The RPM rating given for the DC motor is for?

8. How can we change the speed of a DC motor using PWM?

9. How can the direction of the stepper motor be changed?

27

7. Eight-Bit Analog to Digital Converter

Aim:

To write an assembly language program for analog to digital converter.

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Make ALE low/high by moving the respective data from A register to

DPTR.

2. Move the SOC(Start Of Conversion) data to DPTR from FFD0

3. Check for the End Of Conversion and read data from Buffer at address

FFC0

4. End the Program.

PROGRAM:

Port Address for 74LS174 Latch: FFC8
Port Address for SOC: FFD0

Port Address for EOC 1: FFD8

Port Address for 74LS 244 Buffer: FFC0

Memory Label Opcode Mnemonics Comments

Location

4100 90 FF C8 MOV DPTR, #FFC8

4103 74 10 MOV A, #10 Select Channel 0

4105 F0 MOVX @DPTR, A Make ALE Low

4106 74 18 MOV A, #18 Make ALE High

4108 F0 MOVX @DPTR, A

4109 90 FF D0 MOV DPTR, #FFD0

410C 74 01 MOV A, #01 SOC Signal High

410E F0 MOVX @DPTR, A

410F 74 00 MOV A, #00 SOC Signal Low

4111 F0 MOVX @DPTR, A

4112 90 FF D8 MOV DPTR, #FFD8

4115 E0 MOVX A, @DPTR

4116 30 E0 FC JNB E0, WAIT Check For EOC

4119 90 FF C0 MOV DPTR, #FFC0 Read ADC Data

411C E0 MOVX A, @DPTR

4110 90 41 50 MOV DPTR, #4150 Store the Data

4120 F0 MOVX @DPTR, A

4121 90 FE SJMP HERE

28

Result:

Thus an assembly language program is executed for analog to digital conversion.

Viva questions:

1. Why MOVX instruction is being used to access the ports of the 8255?

2. How many pins of the 8255 can be used as the I/O ports?

3. Why two pins for ground are available in ADC0804?

4. What is the function of the WR pin?

5. While programming the ADC0808/0809 IC what steps are followed?

6. In ADC0808/0809 IC which pin is used to select Step Size?

29

8. Eight-Bit Digital to Analog Converter

Aim:

To write an assembly language program for digital to analog converter.

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Move the Port Address of DAC 2 FFC8 to the DPTR.

2. Move the Value of Register A to DPTR and then Call the delay.

3. Move the Value of Register A (FFh) to DPTR and the call the dalay.

4. Repeat the steps 2 and 3.

PROGRAM TO GENERATE SQUARE WAVEFORM

Memory Label Opcode Mnemonics Comments

Location

4100 90 FF C8 MOV DPTR, #0FFC8H

4103 START: 74 00 MOV A, #00H

4105 F0 MOVX @DPTR, A

4106 12 41 12 LCALL DELAY

4109 74 FF MOV A, #0FFH

410B F0 MOVX @DPTR, A

410C 12 41 12 LCALL DELAY

410F 02 41 03 LJMP STTART

4112 79 05 MOV R1, #05H

4114 7A FF MOV R2, #0FFH

4116 DA FE DJNZ R2, HERE

4118 D9 FA DJNZ R1, LOOP

411A 22 RET

411B 80 E6 SJMP START

PROGRAM TO GENERATE SAW-TOOTH WAVEFORM

Memory Label Opcode Mnemonics Comments

Location

4100 90 FF C0 MOV DPTR, #0FFC0H

4103 74 00 MOV A, #00H

4105 F0 MOVX @DPTR, A

4106 04 INC A

4107 80 FC SJMP LOOP

30

PROGRAM TO GENERATE TRIANGULAR WAVEFORM

Memory Label Opcode Mnemonics Comments

Location

4100 90 FF C8 MOV DPTR, #0FFC8H

4103 74 00 MOV A, #00H

4105 F0 MOVX @DPTR, A

4106 04 INC A

4107 70 FC JNZ LOOP1

4109 74 FF MOV A, #0FFH

411B F0 MOVX @DPTR, A

410C 14 DEC A

410D 70 FC JNZ LOOP2

410F 02 41 03 LJMP START

Result:

Thus an assembly language program for Digital to Analog has been executed.

Viva questions:

1. Why the switches used in weighted resistor DAC are of single pole double throw (SPDT)

type?

2. Determine the Full scale output in a 8-bit DAC for 0-15v range?

3. How to decide the digital levels?

4. Which pins of a microcontroller are directly connected with 8255?

31

9. Transfer data serially between two kits

Aim:

To write an assembly language program Transmitting and Receiving the data between

two kits.

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Initialize TMOD with 20H

2. Set the values for TCON and SCON

3. Set the input address to DPTR

4. Based on the bit value on SCON store the data in SBUF

5. Increment DPTR and check for the loop end value

PROGRAM FOR RECEIVER.

Memory Label Opcode Mnemonics Comments

Location

4100 75 89 20 MOV TMOD, #20H

4103 75 8D A0 MOV TH1, #0A0H

4106 75 8B 00 MOV TL1, #00H

4109 75 88 40 MOV TCON, #40H

410C 75 98 58 MOV SCON, #58H

410F 90 45 00 MOV DPTR, #4500H

4112 RELOAD 7D 05 MOV R5, #05H

4114 CHECK 30 98 FD JNB SCON.0, CHECK

4117 C2 98 CLR SCON.0

4119 E5 99 MOV A, SBUF

411B F0 MOVX @DPTR, A

411C A3 INC DPTR

411D B4 3F F2 CJNE A, #3FH,

 RELOAD

4120 DD F2 DJNZ R5, CHECK

4122 E4 CLAR A

4123 12 00 20 LCALL 0020H

Algorithm for Transmitter:

1. Initialize TMOD with 20H

2. Set the values for TCON and SCON

3. Set the input address to DPTR

4. Based on the bit value on SCON store the data in SBUF and move the data

to register „A‟.

5. Increment DPTR and check for the loop end value

32

PROGRAM FOR TRANSMITTER.

 Memory Label Opcode Mnemonics Comments

 Location

4100 75 89 20 MOV TMOD, #20H

4103 75 8D A0 MOV TH1, #0A0H

4106 75 8B 00 MOV TL1, #00H

4109 75 88 40 MOV TCON, #40H

 410C 75 98 58 MOV SCON, #58H

 410F 90 45 00 MOV DPTR, #4500H

4112 RELOAD 7D 05 MOV R5, #05H

4114 REPEAT E0 MOVX A, @DPTR

4115 F5 99 MOV SBUF, A

4117 CHECK 30 99 FD JNB SCON.1, CHECK

 411A C2 99 CLR SCON.1

 411C A3 INC DPTR

 411D B4 3F F2 CJNE A, #3FH,

 RELOAD

4120 DD F2 DJNZ R5, REPEAT

4122 E4 CLAR A

4123 12 00 20 LCALL 0020H

 SAMPLE INPUT AND OUTPUT:

 Sl.No Transmitter Input (Hex Values) Receiver Output (Hex Values)

 1 00 00

 2 11 11

 3 22 22

 4 33 33

Result:

Thus an assembly language program for transmitting and Receiving the data between two kits

Viva questions:

1. Which devices are specifically being used for converting serial to parallel and from parallel

to serial respectively?

2. What is the difference between UART and USART communication?

3. What is the function of the SCON register?

4. What should be done if we want to double the baud rate?

5. Why baud rate is mentioned in serial communication?

6. What is a null modem connection?

7. Which logic level is understood by the micro-controller/micro-processor?
 8. Which signal controls the flow of data?

33

10.8051 MICROCONTROLLER TIMER/COUNTER PROGRAMMING

AIM:

Generate a Square wave form with an ON time of 3 ms and an OFF time of 10 ms an all pins of

port 0. Assume XTAL of 22 MHz (Use assembly language in Keil software).

SOFTWARE REQUIRED:

Keil IDE

PROCEDURE:

 Click KeilµVision2 icon in the desktop
 From Project Menu open New project
 Select the target device as AT89C51
 From File Menu open New File
 Type the program in Text Editor
 Save the file with extension“.asm” for ALP and “.C” extension for embedded C

program.
 In project window click the tree showing TARGET
 A source group will open.
 Right Click the Source group and click“Add files to Source group”
 A new window will open. Select our file with extension“.asm”
 Click Add.
 Go to project window and right click Source group again
 Click Build Target(F7).
 Errors if any will be displayed.
 From Debug menu,select START/STOP Debug option.
 In project window the status of all the registers will be displayed.
 Click Go from Debug Menu.
 The results stored in registers will be displayed in Project window.

 Stop the Debug process before closing the application.

PROGRAM: ORG 0000H
 MOV TMOD,#01H
 BACK: MOV TL0,#75H
 MOV TH0,#0B8H
 MOV P0,#00
 ACALL DELAY
 MOV TL0,#08AH
 MOV TH0,#0EAH
 MOV P0,#0FFH
 ACALL DELAY
 SJMP BACK
 ORG 300H
DELAY: SETB TR0

34

AGAIN: JNB TF0,AGAIN

 CLR TR0

 CLR TF0

 RET

 END

SIMULATION RESULT

Result:

A Square wave form with an ON time of 3 ms and an OFF time of 10 ms is generated and verified

using Keil software.

Viva questions:

1) What is timer/counter registers in 8051?

2) What is the size of timer/Counter?

3) When timer overflow occurs?

35

11. TRAFFIC LIGHT CONTROLLER

Aim:

To write an assembly language program to display Characters on a seven display interface.

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Fix the control the control and move the control word to control register.

2. Move the Traffic Light LED Position values to Port A, Port B and Port C

respectively based on the logic.

3. Fix the delay based on the requirement.

3. Execute the program.

PROGRAM:

 4100 ORG 4100

 CONTRL EQU 0FF0FH

 PORT A EQU 0FF0CH

 PORT B EQU 0FF0DH

 PORT C EQU 0FF0EH

 Memory Label Opcode Mnemonics Comments

 Location

 4100 74 80 MOV A, #80H

 4102 90 FF 0F MOV DPTR, #CONTRL

 4105 F0 MOVX @DPTR, A

 4106 START 7C 04 MOV R4, #04H

 4108 90 41 9B MOV DPTR, #LOOK1

 410B AA 83 MOV R2, DPH

 410D AB 82 MOV R3, DPL

 410F 90 41 8F MOV DPTR, #LOOK

 4112 A8 83 MOV R0, DPH

 4114 A9 82 MOV R1, DPL

 4116 GO E0 MOVX A, @DPTR

 4117 A8 83 MOV R0, DPH

 4119 A9 82 MOV R1, DPL

 411B 90 FF 0C MOV DPTR, #PORT A

 411E F0 MOVX @DPTR, A

 411F 09 INC R1

 4120 88 83 MOV DPH, R0

 4122 89 82 MOV DPL, R1

 4124 E0 MOVX A, @DPTR

 4125 A8 83 MOV R0, DPH

 4127 A9 82 MOV R1, DPL

36

4129 90 FF 0D MOV DPTR, #PORT B

412C F0 MOVX @DPTR, A

412D 09 INC R1

412E 88 83 MOV DPH, R0

4130 89 82 MOV DPL, R1

4132 E0 MOVX A, @DPTR

4133 A8 83 MOV R0, DPH

4135 A9 82 MOV R1, DPL

4137 90 FF 0E MOV DPTR, #PORT C

413A F0 MOVX @DPTR, A

413B 09 INC R1

413C 12 41 75 LCALL DELAY

413F 8A 83 MOV DPH, R2

4141 8B 82 MOV DPL, R3

4143 E0 MOVX A, @DPTR

4144 AA 83 MOV R2, DPH

4146 AB 82 MOV R3, DPL

4148 90 FF 0C MOV DPTR, #PORT A

414B F0 MOVX @DPTR, A

414C 0B INC R3

414D 8A 83 MOV DPH, R2

414F 8B 82 MOV DPL, R3

4151 E0 MOVX A, @DPTR

4152 AA 83 MOV R2, DPH

4154 AB 82 MOV R3, DPL

4156 90 FF 0D MOV DPTR, #PORT B

4159 F0 MOVX @DPTR, A

415A 0B INC R3

415B 8A 83 MOV DPH, R2

415D 8B 82 MOV DPL, R3

415F E0 MOVX A, @DPTR

4160 AA 83 MOV R2, DPH

4162 AB 82 MOV R3, DPL

4164 90 FF 0E MOV DPTR, #PORT C

4167 F0 MOVX @DPTR, A

4168 0B INC R3

4169 12 41 82 LCALL DELAY1

416C 88 83 MOV DPH, R0

416E 89 82 MOV DPL, R1

4170 DC A4 DJNZ R4, GO

4172 12 41 06 LCALL START

4175 DELAY 7D 12 MOV R5, #12H

4177 L3 7E FF MOV R6, #0FFH

4179 L2 7F FF MOV R7, #0FFH

417B L1 DF FE DJNZ R7, L1

417D DE FA DJNZ R6, L2

417F DD F6 DJNZ R5, L3

4181 22 RET

4182 DELAY1 7D 12 MOV R5, #12H

37

4184 L6 7E FF MOV R6, #0FFH

4186 L5 7F FF MOV R7, #0FFH

4188 L4 DF FE DJNZ R7, L4

418A DE FA DJNZ R6, L5

418C DD F6 DJNZ R5, L6

418E 22 RET

418F LOOK 44 27 12 DB 44H, 27H, 12H

4192 92 2B 10 DB 92H, 2BH, 10H

4195 84 9D 10 DB 84H, 9DH, 10H

4198 84 2E 48 DB 84H, 2EH, 48H

419B LOOK1 48 27 12 DB 48H, 27H, 12H

419E 92 4B 10 DB 92H, 4BH, 10H

41A1 84 9D 20 DB 84H, 9DH, 20H

41A4 04 2E 49 DB 04H, 2EH, 49H

Result:

Thus an assembly language program for the Traffic Light Control has been executed.

Viva questions:

1. Which pins of a microcontroller are directly connected with 8255?

2. Which pins are used to select the ports and the control register?

3. How many pins of the 8255 can be used as the I/O ports?

4. How to move the position?

5. How to delay the signaling?

6. How to incorporate realtime traffic monitoring?

7. How to do demand based signaling?

8. How to sense the traffic density?

38

12. TEST PROGRAM USING ARM 9 mini 2440 KIT

Aim:

To write a test program for interfacing LED with ARM9 mini 2440 kit

Apparatus required:

ARM 9 mini 2440 kit

(0-5V) DC battery

Procedure:

1. When developing C language programs, the main function is generally used as the entry point, and

the main function is just a function, so it must be called by others and the return value is returned to

the caller. So when we are developing, when the LED is on, no one will call our function, so we need

to do this work by ourselves.

2. Hardware initialization: turn off the watchdog

 3. Software initialization: set the stack: point the stack pointer sp to a certain piece of memory

4. The initialization of hardware and software is called a startup file, and the startup file is an

assembly code

PROGRAM:

Startup file crt0.S

.text

.global _start

_start:

 LDR r0,=0x53000000 @WATCHDOG register address

 MOV r1, #0x00000000 @r1 is 0

 STR r1,[r0] @Write 0, disable WATCHDOG, otherwise the CPU will restart continuously

 LDR sp,=1024*4 @Set the stack, note: it cannot be larger than 4k, because the available memory is

only 4k

 @ Memory SRAM, 4k

 The code in @Nand Flash will be moved to the internal ram after reset, this ram is only 4k

 bl main @call the main function in the c program, the bl instruction will jump to the main function,

and put the return value in lr

halt_loop:

 b halt_loop

ledon_c.c file

#define GPBCON *((volatile unsigned long *)0x56000010)

#define GPBDAT *((volatile unsigned long *)0x56000014)

 //volatile is to let the compiler not to optimize

int main()

{

 GPBCON = 0x00000400;//Set GPB5 as the output port

 GPBDAT = 0x00000000;

39

 return 0;

}

Makefile

CFLAGS := -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -ffreestanding

ledon.bin:crt0.S ledon_c.c

 arm-linux-gcc -g -c crt0.S -o crt0.o

 arm-linux-gcc -g -c ledon_c.c -o ledon_c.o

 arm-linux-ld -Ttext 0x00000000 crt0.o ledon_c.o -o ledon_elf

 arm-linux-objcopy -O binary -S ledon_elf ledon.bin

 arm-linux-objdump -D -m arm ledon_elf > ledon.dis

clean:

 rm -rf *.bin *elf *.o *.dis

Result:

Thus an assembly language program for interfacing LED with ARM9 mini 2440 kit has been done.

Viva questions:

1. What is the oscillator frequency of mini 2440 kit?

2. How many jumpers are available in mini 2440 kit?

3. How ARM 9 is different from 8085 and 8086 processors?

40

13. Hex TO ASCII CONVERSION

Aim:
Write an assembly language program to convert a binary number to its equivalent

ASCII code and display the result in the address field.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Get the decimal number in the range 00 to 99 as input

2. Separate the higher and lower nibble of the two digit number

3. Add 30h to the lower nibble and store the result

4. Bring the higher nibble to the ones position, add 30h to it and display the result.
Program:

Memory Label Opcode Mnemonics Comments

Location

4100 90 42 00 MOV DPTR,#4200H Input a Hex Value

4103 E0 MOVX A, @DPTR

4104 F8 MOV R0,A

4105 94 0A SUBB A, #0AH Compare Value 0-9

4107 50 05 JNC LOOP1 Values A-F go to Loop 1

4109 E8 MOV A,R0

410A 24 30 ADD A,#30H 0-9 Add 30H

410C 80 03 SJMP LOOP

410E LOOP 1 E8 MOV A, RO

410F 24 37 ADD A, #37H A-F Add 37H

4111 LOOP 90 45 00 MOV DPTR, #4500H

4114 F0 MOVX @DPTR, A ASCII Value Output

4115 80 FE SJMP 4115

41

SAMPLE INPUT AND OUTPUT:

INPUT:

Memory address Data

4200 Hex Data=

OUTPUT:

Memory address Data

4500 ASCII Data=

Result:

Thus the assembly language program was written to converter Hexadecimal number to
equivalent ASCII Code and executed using 8051 microcontroller.

Viva questions:

1) How hex is different from binary?

2) What is ASCII?

3) What is extended ASCII?

4) How many iterations needed in the convertion?

5) How many registers are involved?

6) What is the complexity involved?

42

14. ASCII TO BINARY CONVERSION

Aim:
Write an ALP to convert a ASCII to its equivalent BINARY number and display

the result in the data field.

Apparatus required:

8051 microcontroller kit
(0-5V) power supply

Algorithm:

Step1: Get the Ascii code.

Step2: Clear carry bit
Step3: Subtract with borrow 30h from the input

Step4: Subtract Accumulator with 0AH

Step5: Display Hexadecimal Value at 4300H

Step6: Display Binary Value at 4500H

Program:

Memory Label Opcode Mnemonics Comments

Location

4100 90 42 00 MOV DPTR#4200H Get an Input

4103 E0 MOVX A,@DPTR

4104 C3 CLR C

4105 94 30 SUBB A,#30H Convert ASCII

4107 C3 CLR C

4108 94 0A SUBB A, #0AH

410A 40 04 JC LOOP

410C 74 FF MOV A, #FFH

410E 80 02 SJMP L1

4110 LOOP 24 0A ADD A,#0AH

4112 L1 90 43 00 MOV DPTR, #4300H

4115 F0 MOVX @DPTR,A

4116 F5 F0 MOV B,A

43

4118 79 08 MOV R1,#08H

411A 90 45 00 MOV DPTR,#4500H BINARY OUTPUT

411D LOP 13 RRC A

411E F5 F0 MOV B,A

4120 40 05 JC LOOP1

4122 74 00 MOV A,#00H

4124 F0 MOVX @DPTR,A

4125 80 03 SJMP RESULT

4127 LOOP1 74 01 MOV A, #01H

4129 F0 MOVX @DPTR, A

412A RESULT 05 82 INC DPL

412C E5 F0 MOV A,B

412E D9 ED DJNZ R1, LOP

4130 80 FE SJMP 4130

 Address Sample1 Sample2

Input (ASCII) 4200

Hexa Decimal Value 4300

Output (BINARY)in 4500

the data field 4501

Result:
Thus the assembly language program was written to converter ASCII
number to equivalent Binary Value and executed using 8051
microcontroller.

Viva questions:

1) How hex is different from binary?

2) What is ASCII?

3) What is extended ASCII?

4) How many iterations needed in the convertion?

5) How many registers are involved?

6) What is the complexity involved?

44

15. FIND THE SQUARE ROOT OF A GIVEN DATA

Aim:

To write an assembly language program to find the square root of a given data

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Enter a program.

2. Enter the input hex value to location 4200h.

3. Execute the program.

4. The output square root value stored in a location 4500h.

PROGRAM:

Memory Label Opcode Mnemonics Comments

Location

4100 Origin: 90 42 00 MOV DPTR,#4200h Get a input data

4103 e0 MOVX A,@DPTR

4104 f9 MOV R1,a

4105 7a 01 MOV R2, #01h Initialize counter

4107 LOOPI: e9 MOV A,R1

4108 8a f0 MOV B,R2

410a 84 DIV AB divide the given value

 and counter

410b fb MOV R3,A

410c ac f0 MOV R4,B

410e 9a SUBB A ,R2 compare

410f 60 03 JZ RESULT Dividend and counter

4111 0a INC R2

4112 80 f3 SJMP L1

SAMPLE INPUT AND OUTPUT:
ML Input

4200 40(hex
value)=64(decimal)

ML Output

4500 8

45

Result:

Thus an assembly language program is written to find the square root of a given data and
executed successfully.

Viva questions:
1) How to square the number?

2) How different is squaring from multiplication?

3) What is the complexity involved in finding the square root?

4) How many iterations needed?

5) How many registers are involved?

6) What is the complexity involved?

46

16. Seven segment display

Aim:

To write an assembly language program to display characters on a seven display interface.

Apparatus required:

8051 microcontroller kit

(0-5V) DC battery

Algorithm:

1. Enter a program.

2. Initialize number of digits to Scan

3. Select the digit position through the port address C0

4. Display the characters through the output at address C8.

5. Check whether all the digits are display.

6. Repeat the Process.
PROGRAM:

Memory Label Opcode Mnemonics Comments

Location

4100 START 90 41 2B DPTR, #TABLE Display message

4103 AA 82 MOV R2, DPL

4105 AB 83 MOV R3, DPH

4107 78 07 MOV R0, #07H

4109 7F 08 MOV R7, #08H Initialize no.of digits to

 Scan

410B L1 E8 MOV A, R0 Select digit position

410C 90 FF C0 MOV DPTR, #0FFC0H

410F F0 MOVX @DPTR, A

4110 8A 82 MOV DPL, R2

4112 8B 83 MOV DPH, R3

4114 E0 MOVX A, @DPTR

4115 90 FF C8 MOV DPTR, #0FFC8H

4118 F0 MOVX @DPTR, A

4119 12 41 22 LCALL DELAY

411C 0A INC R2

411D 18 DEC R0 Check if 8 digits are

 Displayed

411E DF EB DJNZ R7, L1 If not repeat

4120 21 00 AJMP START Repeat from the 1
st

 digit

4122 DELAY 7C 02 MOV R4, #02H

4124 L3 7D FF MOV R5, #0FFH

4126 L2 DD FE DJNZ R5, R2

4128 DC FA DJNZ R4, L3

412A 22 RET

412B TABLE 3E 06 00 55 DB 3EH, 06H, 00H, 55H

412F 06 39 50 3F DB 06H, 39H, 50H, 3FH

4133 END

47

SAMPLE INPUT AND OUTPUT:

Sl.No Input (hex Values) Output (Characters)

Result:

Thus an assembly language program displaying characters on seven segment display has been
executed.

Viva questions:

1. What are the different types of LED displays?

2. What is 7 segment display?

3. How to change the intensity of display light?

4. How many segments can be connected to 8051 controller?

5. What is the driving strength?

