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ABSTRACT 

 

The objective of this paper is to propose an 8-bit MAC using FPGA. In Conventional multiplier, there 

are many partial steps which reduce the computational speed of a multiplier. Along with accuracy 

demand for minimizing area, power, and delay of the processor by enhancing speed is the focus point. 

Vedic mathematics rules and algorithms generate partial products concurrently and save time. The 

multipliers performance in terms of latency, power, and area is determined by the number of stages used 

to sum the partial products. In this paper, a new architecture of Vedic multiplier is introduced which 

reduces the area and increase the speed when compared to the conventional Vedic multiplier. The 

proposed model is simulated and synthesized using Xilinx Vivado on different FPGA families and 

delay, area and power are observed. The conclusion drawn from observing the result is that 

implementation of multiplier using Virtex-6 (lower power) provides optimized outputs in terms of area, 

delay and power. The model is also implemented on Basys3 Artix7 FPGA with the help of Xilinx 

Vivado and verified the functionality of the proposed model 
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                                                    CHAPTER-1 
 

INTRODUCTION 
 

One of the most frequently utilized arithmetic knowledge paths in contemporary digital design is 

the multiplier. An essential and computationally demanding process is multiplication. Several 

components of a digital system or computing device, most notably signal processing, graphics, 

and scientific calculation, all benefit from the multiplication operation. The Booth algorithmic 

programme could be a significant advancement in the signed binary multiplication method. In 

many digital signal processing (DSP) applications involving multiplications and/or 

accumulations, MAC units are a necessary component. MAC unit [1] is used for high-

performance digital signal processing systems. The execution speed and performance of the 

complete calculation are determined by the multiplication and addition arithmetic speed since 

they are essentially performed by repetitive application of multiplication and addition. As a 

result, the MAC unit's capabilities enable high-speed filtering and other processing that is typical 

of DSP applications. A multiplier and an accumulator holding the total of the prior sequential 

products make up a MAC unit. The design of a high-performance 64-bit Multiplier-Accumulator 

(MAC) is implemented using Verilog HDL . Due of their greater speed performance, compressor 

adders have been chosen for this method over traditional half-adder and full adder architectures. 

These compressors behave like adders because they actually serve as counters, counting the 

number of ones in the input bits. In addition to half-adders and full adders, they use multiplexers, 

which enable the use of smaller XOR gates and hence higher speed. Some carries are also 

produced with each resulting bit, which is used to calculate the following final product bits. 
 

1.1 PROJECT OBJECTIVE: 
 

The primary goal of this project is to research, construct, and analyses a higher order compressor 

adder 16-bit MAC unit using VLSI (Very Large-Scale Integration) design. Xilinx Vivado is used 

for the Synthesis and Implementation of various compressor adder types. Power, area, and delay 

comparisons are made for the performance. 
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1.2 PROJECT OUTLINE: 
 

This project report is presented over the 6 remaining chapters. 

Chapter 2 presents Introduction to Vedic Mathematics 

Chapter 3 explains Introduction to Multipliers . 
 

Chapter 4 is about Introduction to Compressor Adders and its different types. 
 

Chapter 5 introduction to adder unit 
 

Chapter 6 results 
 

Chapter 7 introduction to Verilog 
 

Chapter 8 xilinx software 
 

Finally, the results of the project work and conclusions are drawn. 
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CHAPTER 2 
 

INTRODUCTION TO VEDIC MATHEMATICS 
 

In this chapter, we merely review a few ideas that were previously covered in the Vedic Mathe 

matics textbook published by Jagadguru Swami Sri Bharati Krsna Tirthaji Maharaja (Sankarach 

arya of Govardhana Matha, Puri, Orissa, India), General Editor, Dr. V.S. Agrawala.Quick overv 

iew of his background before.He was born to highly educated and religious parents in March18 

84At Tinnevelly (Madras Presidency), his father Sri P Narasimha Shastri served as a Tahsildar 

before retiring as a Deputy Collector.His greatgrandfather was Justice C. Ranganath Shastri of t 

he Madras High Court, and his uncle, Sri Chandrasekhar Shastri, served as the principal of the 

Maharajas College at Vizianagaram.He attended the Hindu College Tinnivelly, Church Mission 

ary Society College, and National College Tiruchirapalli in Tamil Nadu.He topped the list after 

he successfully completed the Madras University matriculation exams .In July 1899, the Madra s 

Sanskrit Association bestowed upon him the title of "Saraswati" in recognition of his exceptio 

nal command of Sanskrit.After placing first in the B.A. test, Sri Venkataraman applied from th e 

Bombay Centre for the M.A. examination at the American College of Sciences, Rochester, Ne w 

York, in 1903.Sanskrit, philosophy, english,mathematics, history, and science were among th e 

subjects he was tested on.He had an excellent memory.He abruptly left his position as a teach er 

in 1911 because he was unable to contain his burning desire for spiritual knowledge, practise and 

attainment at that time. He returned Sacchidananda Shivabhinava Nrisimha Bharati Swam i in 

Sringeri.The following eight years were devoted to his indepth study of the Brahmasadhana 

practise and the most cuttingedge Vedanta philosophy. He was appointed to the pontifical throne 

of Sharada Peetha Sankaracharya in 1921 after serving for a period. Later, in 1925, he was made 

pontifical head of Sri Govardhan Math Puri, where he spent the remainder of his life.When he 

eventually made the decision to travel to the United States in 1957, he rewrote the current 

volume of Vedic Mathematics from memory, providing an overview of the sixteen equa tions he 

had successfully recreated.The 16 sutras (aphorisms or formulae) and their corollaries a re now 

provided.According to the editor, the text's introduction includes a list of the primary 16 sutras 

and any subsutras or corollaries. 
 
The wording also suggests that Sri Swamiji was responsible for their discovery.The editor also 
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believes that since each educated reader should be able to uncover the immense merit of these g 

uidelines, it is unnecessary to dwell any longer on this point of origin. 

 

Table 1: 16 sutras from the Vedas  
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The fundamental formula is supplied by the phrase "URDHVA TRIYAKBHYAM," which transl 

ates to "Vertical crosswise Urdhvatriyakbhyam sutra." This formula is applicable to all circumsta 

nces of multiplication and will subsequently prove to be very helpful in the division of a huge nu 

mber by another large number.Since there is only one compound word in the entire formula, it is 

incredibly condensed and simply says, "vertically and crosswise. "This succinct sutra has a wide 

range of uses. This sutra was selected because it offers a general formula that can be applied to 

all multiplication scenarios (large bit multiplication, small bit multiplication, and modular 

multiplication), and it is also very compact when dividing a large number by another large number, 

such as when dividing a 15-digit number by a 5-digit number. 

 

The underlying mathematic operation is described as follows.  

Multiplication Using UrdhvaTriyakbhyamSutra: 
 

Assume we must divide (ax+b) by (cx+d). acx2 + x(ad+bc) + bd is the result. These steps can be 
 

taken to get this: The vertical multiplication of a and c yields the coefficient of x2 in step 1. 
 

Step 2: The coefficient of x is derived by adding the two products of the crosswise multiplication 
 

of a and d and b and c. 
 

Step 3: The absolute terms b and d are vertically multiplied to obtain the independent term. 
 

The modus operandi thereof will be made clear by a straightforward illustration. Imagine that we 
 

need to multiply 12 by 13. 
 

The leftmost part of the answer is calculated by multiplying the leftmost digit 1 of each of the 12 
 

Multiplicands vertically by the leftmost digit 1 of the multiplier, yielding the product 1 1:3 + 2:6 = 156. 
 

The middle and rightmost parts of the answer are calculated as follows: 
 

• We multiply 1 and 3 and 1 and 2 crosswise add the two to get 5 as sum. 
 

• We multiply 2 and 3 vertically to get 6 as their product. Thus 12 ´ 13 = 156. 
 
 

 

Example of 8X8 bit multiplication: 
 
 

Let A be the 8-bit multiplicand and B be the 8-bit multiplier. These can be further divided into 4-

bit terms as shown below: 
 

A = A7A6A5A4 A3A2A1A0  

X1 X0  

B = B7B6B5B4 B3B2B1B0  

Y1 Y0 
 

 

SoA = X1 X0 (8 bit Multiplicand) B = Y1Y0 (8 bit Multiplier where X1, X0, Y1, 
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Y0 are each of 4-bits. Multiplying, we get a 16-bit product, which is further divided 

into 4 four-bit terms, F, E, D, C. 
 

X1 X0 x Y1Y0 = F E D C 
 

1. CP = X0 x Y0 = C. 
 

2. CP = X1 x Y0 + X0 x Y1 = D 
 

3 CP = X1 x Y1 = F E 
 

where F is the carry of the product of X1 x Y1 and CP is the cross product 
 

Note: 
 
1. Each multiplicand is a parallel 4 x 4 multiply module that is implanted. Each of the multiplication 
modules generates a carry, which is carried over to the following module.  
2. This multiplier architecture benefits from reduced gate delays and more structural regularity.  
Examples are used to further clarify the procedure. Decimal numbers are used to illustrate two- and three-

digit multiplication examples, and lines are used to represent the multiplication operation. The line's digits are 

multiplied, the result is added to the carry from the previous carry, and the procedure is repeated. 
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CHAPTER 3 

 

PROPOSEDMULTIPLIER     

3.1 INTRODUCTION 

Numerous modern applications, including digital signal processing, rely significantly on 

multipliers. With the development of technology, many researchers have tried and are still 

trying to create multipliers that provide one or more of the following design goals: high 

speed, low power consumption, regularity of layout and thus less area, or even a combination 

of them in one multiplier, making them suitable for various high speed, low power, and 

compact VLSI implementation. 
 

The "add and shift" algorithm is a popular technique for multiplying numbers. The required 

number of partial products has a significant impact on the performance of parallel multipliers. 

One of the most widely used algorithms is the Modified Booth method, which lowers the 

amount of incomplete products that must be added. 
 

Improving speed is the goal. One method for reducing the number of sequential addition 

stages is to use the Wallace Tree algorithm. Additionally, we can observe the benefits of both 

algorithms in a single multiplier by combining the Wallace Tree methodology and the 

Modified Booth algorithm. 
 

The processing could get slower as parallelism is raised since there will be more shifts 

between the partial products and intermediate sums that need to be added. It could also result 

in an increase in silicon area due to irregular structure, as well as a rise in power consumption 

due to an increase in interconnect from complex routing. 
 

However, "serial-parallel" multipliers give up speed for improved performance in terms of 

space and power usage. We describe the architecture and methods for multiplying numbers 

and contrast them in terms of their speed, area, power, and mashups of these measures. 
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3.2 PROPOSED MULTIPLIER: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.2.1 design of propose multipier 
 

In this proposed multiplier, we have used Vedic Multiplication method to design an area-efficient 

multiplier,as Vedic multiplication is more efficient when compared toother multipliers. We have 

designed this multiplier uusing compressorsto reduce the partial products in multiplication.This model 

consists of various compressors which produce the output in single stages without any partial steps.In 

normal multiplier methods there are many partial steps which increases the computational speed of a 

multiplier. So using Vedic Multiplication with compressors reduce the area of the multiplier unit. In 

this design, the output of the respective bits depend only on the previous carry bits and input bits of that 

particular stage and do not depend on the carry bits of other stages. Here the carry bits generated in the 

particular stage will get added up all together to the next respective input bits. So in this way carry 

propagation takes place in the proposed multiplier which is quite different from the existing models. In 

the existing models if the carry bits generated at the stage is more than the one then the carry bits are 

propagated to each and every upcoming stages in a linear fashion which makes the upcoming stages not 

only depend on the previous carry bits but also on the other carry bits. The size of the compressor 

depends on the total sum of the input bits and the carry bits transmitted to that specific stage in the 

compressors employed in this proposed multiplier. The intended multiplier unit's area will be reduced 

by choosing the compressor in this way. 
 

In the proposed multiplier, various compressors such as 4:2 ,5:2, 7:2 compressors and other higher 

order compressors are used at certain positions to get the results of 16 bit multiplication. 
 

The block diagram of our proposed multiplier is shown in fig-10. In the fig-10 we can see that there are 

various compressors used based on input and carry bit size. 
 

The arrows in fig-10 which are in green, brown and red represents input, carry, zero bits. 
 
 
 
 
 

 

8 



EQUATIONS: 
 

Let X and Y are two 8 bit binary inputs and S is the output of size 16 bits. 
 

1.S0 = X0Y0 
 

2.S1 = X1Y0 + X0Y1 (C0) 
 

3.S2 = X2Y0 + X1Y1 + X0Y2 + C0 (C1, C2) 
 

4.S3 = X3Y0 + X2Y1 + X1Y2 + X0Y3 + C1 + C2 (C3, C4, C5) 
 

5.S4 = X4Y0 + X3Y1 + X2Y2 + X1Y3 + X0Y4 + C3 + C4 +C5 (C6,C7, C8, C9) 
 

6.S5 = X5Y0 + X4Y1 +X3Y2 +X2Y3 +X1Y4 +X0Y5 + C6 +C7 +C8+ C9 (C10, C11, C12, C13, C14) 
 

7.S6 = X6Y0 + X5Y1 +X4Y2 +X3Y3 + X2Y4 +X1Y5 + X0Y6 +C10+C11 +C12 +C13 +C14 

(C15,C16,C17,C18,C19,C20) 
 

8.S7 = X7Y0+X6Y1 + X5Y2 +X4Y3 + X3Y4 + X2Y5 +X1Y6 + 

X0Y7+C15+C16+C17+C18+C19+C20 (C21,C22,C23,C24,C25,C26,C27,C28) 
 

9.S8 = X7Y1 + X6Y2 + X5Y3 + X4Y4 + X3Y5 + X2Y6 + X4Y7 

+C21+C22+C23+C24+C25+C26+C27+C28 (C29,C30,C31,C32,C33,C34,C35,C36) 
 

10.S9 = X7Y2 + X6Y3 + X5Y4 + X4Y5 +X3Y6 + X2Y7 + C29+C30+C31+C32+C33+C34+C35+C36 

(C37,C38,C39,C40,C41,C42,C43) 
 

11.S10 = X7Y3 + X6Y4 + X5Y5 + X4Y6 + X3Y7 + C37+C38+C39+C40+C41+C42+C43 

(C44,C45,C46,C47,C48,C49) 
 

12.S11 = X7Y4 + X6Y5 + X5Y6 + X4Y7 + C44 +C45+C46+C47+C48+C49 (C50,C51,C52,C53,C54) 
 

13.S12 = X7Y5 + X6Y6 + X5Y7 +C50+C51+C52+C53+C54 (C55,C56,C57,C58) 
 

14.S13 = X7Y6 + X6Y7 +C55+C56+C57+C58(C59,C60,C61) 
 

15.S14 = X7Y7 + C59+C60+C61 (C62,C63) 
 

16.S15 = C62 + C63 (C64). 
 

In this method, various higher order compressors were involved in performing multiplication as per 

Vedic algorithm. Here, we take two 8-bit binary values, X7 to X0 and Y7 to Y0, where 0 to 7 denote 

the bits from least to greatest significance and S15 to S0 denote the binary output bits acquired when X 

and Y are multiplied. The output bits S0 to S15 are computed by using the partial products which are 

obtained by performing logical “AND” operation between the input bits. While adding the partial 

products in each stage, the carry bits from C0 to C64 are generated and these carry bits are propagated 

in such a manner that all the carry bits generated at the stage are propagated to the next upcoming 

stage. C64 carry bit is neglected as it is superfluous. The individual bits which are obtained from the 

below mentioned equations are concatenated, which in turn produces the final output of multiplication. 
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3.3 WORKING OF MULTIPLIER:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.3.1 multiplication of 11111111 x 11111111 
 

EXAMPLE: 
 

From figure 10, it is observed that two 8-bit numbers i.e.(11111111 x 11111111) are multiplied using 

the proposed model and verified the output using simulation tool. Here in fig 11, the number of carry 

bits generated at right second most stage is one and that is added to the next upcoming stage and 

relevant compressor is used for addition at that stage. Similarly the carry bits generated at right third 

most stage are two and those two carry bits simultaneously added up to the next upcoming stage 

without any further propagation of the carry and relevant compressor is used at that particular stage. 

This process will continue till the last stage and output of the two input binary numbers are computed 

successfully. By propagating all the carry bits at a time without any delay we can reduce the delay time 

of the multiplier and by using relevant compressors at each and every stage of the process we can 

reduce the area of the multiplier 
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CHAPTER-4 

 

INTRODUCTION TO COMPRESSOR ADDERS 

 

4.1 COMPRESSOR ADDERS 

 

In contrast to combinational circuits of half and full adders, compressor adders are fundamental circuits 

that add bits more than four at a time to produce better delay outcomes. The symbol for compressor 

design is N r, where 'N' stands for the number of bits fed in and 'r' stands for the overall number of 1s 

found in N bits. In contrast to adder circuits, it actually reduces gate counts and latency, hence the term 

compressor. The circuits of lower compressors have been improved in significant part through study. 

Higher compressors are also used in conjunction with this to add more bits. The most popular 

compressor architectures are 4-2,7-2, 5-3, 10-4, 15-4, and 20-5. 
 

4.2 VARIEOUS TYPES OF COMPRESSOR ADDERS 

 

4:2 COMPRESSOR ADDER: As the name suggests, a 4-2 compressor reduces four inputs plus one 

carry bit from the preceding column to two outputs (Sum and Carry) and one intermediate carry bit 

(Cout), which is sent as Cin to the following column. 
 

The mathematical link between the input and output of the 4-2 compressor is Cin+X4+X3+X2+X1 = 

Sum+2(Carry+Cout). Implementing a 4-2 compressor with basic cascading of complete adders results 

in a critical path delay of four XOR gates, as shown in Fig. This 4-2 compressor is regarded as a classic 

type because, as illustrated in Fig. 2, logical optimisation decreases the critical route time to three XOR 

gates. 
 

The traditional 4-2 compressor's Boolean equations are as follows: Sum = Cin X4 X3 X2 X1 Carry = 

(X4 X3 X2 X1) Cin + (X4 X3 X2 X1) X4 Cout = (X2 X1) X3 + (X2 X1) X1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4.2.1 4:2 compressor adder 

 

5:2 COMPRESSOR ADDER: There are two phases in a 5-2 compressor adder. The groups of two 

bits are added in the first stage using four half-adders. The carry bits are forwarded to the second stage, 

and the sum bits are merged to yield a 3-bit result. The carry bits from the first stage and the remaining 

bits of the input numbers are added together in the second stage using two full-adders. A 6-bit result 

that represents the sum of the two input numbers is the second stage's output. The 5-2 compressor adder 

is a straightforward and effective method for adding two 5-bit values. It is frequently utilised in digital 
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circuits where efficiency and speed of operation are crucial factors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.2.2 5:2 compressor 

 

6:2 COMPRESSOR ADDER: The 6-2 compressor adder consists of three stages. In the first stage, six 

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by 

each half-adder. The carry bits are forwarded to the second stage, and the total bits are merged to yield a 5-

bit result. The carry bits from the first stage and the remaining bits of the input numbers are added together 

in the second stage using three full-adders. A 5-bit result representing the sum of the two input numbers 

plus the carry bits from the first stage is the result of the second stage. The carry bit from the second stage 

and the last bit of the input numbers are added together in the third stage using a final full-adder. A 7-bit 

result that represents the sum of the two input numbers is the third stage's output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4.2.3 6:2 compressor 

 

7:2 COMPRESSOR ADDER: The 7:2 compressor, as depicted in Figure 6, works similarly to its 4:2 

counterpart in that it may add 7 bits of input data and 2 carries from earlier stages at once. In our 

approach, two 4:2 compressors, two full adders, and one half adder are combined to create a novel 7:2 

compressor. Fig. 7 depicts the architecture for the same. As mentioned earlier, the adoption of the 4:2 

compressor in this architecture would boost efficiency as contrasted to the conventional way of adding 

nine bits at a time using only full adders and half adders because the 4:2 compressor demonstrates a 

sizable speed gain of approximately 66.6%. This causes the processor's speed to improve greatly. 
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Fig 4.2.4 circuit diagram of 7:2 compressor adder 
 
 

 

8:2 COMPRESSOR ADDER: A The 8-2 compressor adder consists of four stages. In the first stage, eight half-

adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by each half-adder. 

The carry bits are forwarded to the second stage, and the total bits are merged to yield a 7-bit result.The carry bits 

from the first stage and the remaining bits of the input numbers are added together in the second stage using four full-

adders. The output of the second stage is a 6-bit result that represents the sum of the two input numbers plus 

the carry bits from the first stage.In the third stage, two full-adders are used to add together the carry bits 

from the second stage along with the remaining bits of the input numbers. The output of the third stage is a 

7-bit result that represents the sum of the two input numbers plus the carry 
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bits from the first and second stages.Finally, in the fourth stage, a final full-adder is used to add 

together the carry bit from the third stage along with the remaining bit of the input numbers. The output 

of the fourth stage is a 9-bit result that represents the sum of the two input numbers.The 8-2 compressor 

adder is a more complex circuit than the 5-2 and 6-2 compressor adders, but it is still an efficient way 

to perform addition of two 8-bit numbers. It is commonly used in digital circuits where low power 

consumption and fast operation are important considerations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.2.5 8:2 compressor adder 
 

 

9:2 COMPRESSOR ADDER: The 9-2 compressor adder consists of five stages. In the first stage, 10 

half-adders are used to add together the groups of two bits. Each half-adder produces a sum bit and a 

carry bit. The sum bits are combined to produce an 8-bit result, while the carry bits are passed on to the 

second stage. 
 
In the second stage, five full adders are used to add the carry bits from the first stage and the remaining 

bits of the input numbers. The output of the second stage is a 7-bit result that represents the sum of the 

two input numbers plus the carry bits from the first stage. In the third stage, threefull adderss are used 

to add the carry bits from the second stage and the remaining bits of the input numbers. 
 
The output of the third stage is an 8-bit result that represents the sum of the two input numbers plus the 

carry bits from the first and second stages. In the fourth stage, twofull adderss are used to add the carry 

bits from the third stage and the remaining bits of the input numbers. 
 
The output of the fourth stage is a 9-bit result that represents the sum of the two input numbers plus the 

carry bits from the first, second, and third stages. Finally, in the fifth stage, a final full-adder is used to 

add together the carry bit from the fourth stage along with the remaining bit of the input numbers. The 

output of the fifth stage is a 10-bit result that represents the sum of the two input number. 
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Fig 4.2.6 9:2 compressor adder 

10:2 COMPRESSOR ADDER: The 10-2 compressor adder consists of six stages. In the first stage, 11 

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced 

by each half-adder. The carry bits are forwarded to the second stage, and the sum bits are merged to 

yield a 9-bit result. The carry bits from the first stage and the remaining bits of the input numbers are 

added in the second stage using five complete adders. An 8-bit result representing the sum of the two 

input integers plus the carry bits from the first stage is the outcome of the second stage. The carry bits 

from the second standits of the input numbers are added together in the third stage using three full-

adders. A 9-bit result representing the sum of the two input numbers plus the carry bits from the first 

and second stages is the third stage's output. The carry bits from the third stand it sits of the input 

numbers are added together in the fourth stage using two full-adders. The output of the fourth stage is a 

10-bit result that represents the sum of the two input numbers plus the carry bits from the first, second, 

and third stages. In the fifth stage, a full-adder is used to add together the carry bit from the fourth stage along 

with the remaining bit of the input numbers. The output of the fifth stage is an 11-bit result that represents the 

sum of the two input numbers plus the carry bits from the first, second, third, and fourth stages. Finally, in the 

sixth stage, another full-adder is used to add together any remaining carry bits from the previous stages. 

The output of the sixth stage is the final 11-bit result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                            Fig 4.2.7 10:2 compressor adder 
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11:2 COMPRESSOR ADDER: The 11-2 compressor adder consists of seven stages. In the first stage, 12 

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by 

each half-adder. The carry bits are sent to the second stage, and the total bits are merged to yield a 10-bit 

output.The carry bits from the first stage and the remaining bits of the input numbers are added in the 

second stage using five full-adders. A 9-bit result representing the sum of the two input numbers plus the 

carry bits from the first stage is the result of the second stage.The carry bits from the second stage are 

combined with the remaining bits of the input numbers in the third stage using three full-adders. The output 

of the third stage is a 10-bit result that represents the sum of the two input numbers plus the carry bits from 

the first and second stages. In the fourth stage, two full-adders are used to add together the carry bits from 

the third stage along with the remaining bits of the input numbers. The output of the fourth stage is an 11-bit 

result that represents the sum of the two input numbers plus the carry bits from the first, second, and third 

stages.In the fifth stage, another full-adder is used to add together the carry bit from the fourth stage along 

with the remaining bit of the input numbers. The output of the fifth stage is a 12-bit result that represents the 

sum of the two input numbers plus the carry bits from the first, second, third, and fourth stages.The sixth 

and seventh stages are used to propagate the carry bits and ensure that the final result is correctly calculated. 

In the sixth stage, a carry-lookahead adder is used to propagate the carry bits from the previous stages. In 

the seventh stage, an additional full-adder is used to combine the carry bits with the final result and produce 

the correct 12-bit output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.2.8 circuit diagram of 11:2 compressor adder 
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CHAPTER 5 

 

ADDER UNIT 
 

 

5.1 INTRODUCTION: 

 

A digital circuit known as an adder is used to add two binary digits. One of the most basic arithmetic 

circuits used in digital systems is this one. Most digital systems, such as microprocessors, digital signal 

processors, and other digital circuits, use adders. 
 
An adder generates a sum output from two binary inputs of 1s and 0s each. The fundamental working of an 

adder is that it adds the two inputs bit by bit, beginning with the least significant bit (LSB), propagating the 

carry to the next significant bit (NSB), and so forth, until it reaches the most significant bit (MSB). 
 
There are various varieties of adders, including full, ripple, carry-lookahead, carry-select, and half-

adders. Depending on the needs for speed, area, power, and complexity, several types of adders are 

employed in different applications. Each form of adder has advantages and disadvantages of its own. 
 

In digital systems, adders are a fundamental building component for arithmetic operations and are 

important for carrying out numerous arithmetic and logical processes. They are also utilised in 

numerous other fields of digital electronics, including digital signal processing, computer graphics, and 

cryptography. 
 
5.2 CARRY SELECT ADDER : 
 

To add two binary numbers, a carry-select adder (CSLA), a form of digital adder, is employed. 

Because it can add several bits simultaneously, decreasing the delay time and accelerating adding 

speed, it is a faster and more effective adder than a ripple-carry adder (RCA). 
 

A two-stage procedure is used by the carry-select adder to perform addition. Two distinct carry 

propagation chains—one for the high-order bits and one for the low-order bits—are established in the 

first stage. Every chain is made to determine the carry-out at every bit point under the assumption that 

the carry-in is 0. 
 
Based on the value of the carry-in, a multiplexer is utilised in the second stage to choose the carry-out 

from the appropriate chain. The carry-out is chosen from the low-order chain if the carry-in is 0. The 

carry-out from the high-order chain is chosen if the carry-in is 1. 
 
The two binary numbers' sum and a carry-out are the output. Any two equal-length binary numbers can 

be added together using the carry-select adder. 
 

The carry-select adder has the advantage over the ripple-carry adder in that it allows several bits to be 

added in parallel, which decreases the delay time and speeds up addition. In contrast to the ripple-carry 

adder, it is more difficult and expensive to implement. 
 

A N-bit carry choose adder is designed to prevent the carry from spreading from bit to bit sequentially. 

We might choose between the outputs of the two parallel adders using the real carry input created if we 

had two adders operating in parallel, one with a carry input of 0 and the other with a carry input of 1. 

This implies that all adders may be running calculations concurrently. Since it is rather inefficient to 

employ two adders for each result bit, we may configure the N-bit adder to use two concurrent 2*N/M-

1 M-bit ripple carry adders. There is no need for parallel addition in this scenario because the adder for 
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the least significant bits will always have a carry input of 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5.2.1 internal diagram of carry select adder 
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CHAPTER 6 

 

RESULTS 
 

6.1 Simulation Results of 8 bit multiplier:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.1.1 : Simulation waveform of 8-bit multiplication  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.1.2: RTL Diagram of 8-bit multiplication 
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Fig.6.1.3: Synthesized schematic of 8-bit multiplication  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6.1.4: Power report and LUTs utilized for 8-bit multiplication 
 
 

The proposed model is simulated and synthesized using Xilinx Vivado and implemented on Artix-7 FPGA 

using The simulation results and RTL schematic of the proposed model is shown in figure 11 and figure 12 

respectively . The designs are simulated and verified its functionality by providing different set of inputs 

and the corresponding output is verified. For example the first inputs are ff x ff which are in hexadecimal 

produced output as fe01 in hexadecimal which implies 255 x 255 = 65025.Register Transfer 
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Level (RTL) is an abstraction for defining the digital portions of a design.The figure 12represents the 

RTL diagram of 8-bit multiplier designed using proposed method. From the figure 13 and figure 14 it 

is portrayed that synthesized schematic and power report of the proposed model. 

 
 

6.1.1 Comparison Environment: 
 

In this section, various comparisons have included in Table1 and Table2. Table1 projects the blocks 

required by the proposed 8-bit vedic multiplier 
 

Table2: Manual Resource utilization of 8-bit proposed Multiplier 
 

      Area  Delay  

 
Multiplier 

   (LUTs)  (ns)  
         

           

 Proposed Multiplier    95   12.735  
          

 Conventional 8-Bit Vedic Multiplier [23]  167   27.650  
         

 8-Bit Vedic Multiplier Using Compressors [24] 153   13.480  
         

 Table3:Comparison among various FPGA families    
        

FPGA Family  No. of Slices  Delay(ns)  Power(W)  
         

 Artix-7  50  12.735  0.082  
        

Automotive Artix-7  50  10.216  0.082  
         

 Spartan-6  40  18.639  0.081  
         

 Vertex-6  35  9.141  4.447  
        

Vertex-6 lower power  33  9.404  1.412  
           

 
 

 

Percentage improvement: From the results it is portrayed that implementation of multiplier using 

Virtex-6 (lower power) provides optimized results in terms of area, delay and power compared to other 

FPGA families. By using Vertex-6 (lower power) FPGA we can observe that there is 26.15% 

improvement in delay and 34% reduction in area compared to Artix 7, 17.5% reduction in area and 

49.54% improvement in delay compared to Spartan 6. As far as power concern, Spartan 6 and Artix 7 

provide better performance compared to Virtex 6 family. 
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6.2 Simulation Results of 16-bit multiplier:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6.2.1: Simulation waveform of 16-bit multiplication  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6.2.2: RTL Diagram of 16-bit multiplication  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig6.2.3: Synthesized schematic of 8-bit multiplication 
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The designs are simulated and verified its functionality by providing different set of inputs and the 

corresponding output is verified. For example the first inputs are ffff x ffff which are in hexadecimal 

produced output as fe01 in hexadecimal which implies 65535 x 65535 = 4294836225. Register 

Transfer Level (RTL) is an abstraction for defining the digital portions of a design. The figure 13 

represents the RTL diagram of 16-bit multiplier designed using proposed method. 
  

6.2.1 Comparison observation: 

                               

                                  Table4 : Comparison among various FPGA families 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the results it is portrayed that implementation of multiplier using Artix 7 provides optimized 

results in terms of power compared to other FPGA families. By using Vertex-6 FPGA we can observe 

that the number of occupied slices are less when compared to the other FPGA families.Virtex 7 

provides optimized results in terms of gate delay,delay for logic and delay for route. 

 

 

Multiplier Area Delay 

 (no of occupied (ns) 

 slices)  

Reference Paper (25) 415 25.044 
   

Reference Paper (26) - 36.71 
   

Reference Paper (27) - 32 
   

Reference Paper (28) 436 - 
   

Proposed Design 221 24.90 
   

From the above table, we observed that the area of the multiplier is reduced nearly 49 % when compared to 

the reference paper (25 and 26).The delay of the proposed multiplier is reduced nearly 32% when 

compared to the reference paper (26). So, it is observed that the proposed multiplier is efficient in 

terms of delay and area when compared to other existing multipliers. 
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Table5 : Manual Resource utilization of 16-bit 
proposed Multiplier 

 



6.3 Simulation Results of 8 bit MAC:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.3.1: Simulation waveform of 8-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.3.2: RTL diagram of 8-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.3.3: Synthesized schematic of 8-bit MAC 
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Fig 6.3.4: LUTs utilized for 8-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.3.5 : Power report for 8-bit MAC 
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The performance of an 8-bit MAC operation depends on the speed of the multiplier and adder circuits, 

as well as the accuracy of the result. Different techniques can be used to optimize the performance and 

accuracy of the MAC operation, such as using parallel multipliers and adders, implementing high-

speed algorithms for multiplication and accumulation, and using precision arithmetic techniques to 

reduce rounding errors. 
 

The result of an 8-bit MAC operation is a single 8-bit number that represents the accumulated product 

of the two input numbers. The result can be represented in binary, decimal, or hexadecimal format, 

depending on the requirements of the application. 
 

In conclusion, an 8-bit MAC operation involves multiplying two 8-bit numbers and accumulating the 

result with a previously accumulated value. The result is an 8-bit number that represents the 

accumulated product of the two input numbers. The performance and accuracy of the operation depend 

on the speed of the multiplier and adder circuits, as well as the techniques used to optimize the 

calculation. The result can be represented in binary, decimal, or hexadecimal format, and may require 

saturation and/or rounding-off depending on the application requirements. Overall, the 8-bit MAC 

operation is a fundamental building block of digital signal processing and other numerical applications, 

and is widely used in various embedded systems and microcontroller-based applications. 

 

6.4 Simulation Results of 16-bit MAC:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.4.1 : Simulation waveform of 16-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.4.2 : RTL diagram of 16-bit MAC 
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Fig 6.4.3: Synthesized schematic of 16-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.4.4 : LUTs utilized for 16-bit MAC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6.4.5 : Power report for 16-bit MAC  
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A 16-bit MAC (Multiply-Accumulate) operation involves multiplying two 16-bit numbers and 

accumulating the result with a previously accumulated value. This operation is commonly used in 

digital signal processing and other numerical applications that require higher precision than an 8-bit 

MAC operation. 
 
The performance of a 16-bit MAC operation depends on the speed of the multiplier and adder circuits, 

as well as the accuracy of the result. Different techniques can be used to optimize the performance and 

accuracy of the MAC operation, such as using parallel multipliers and adders, implementing high-

speed algorithms for multiplication and accumulation, and using precision arithmetic techniques to 

reduce rounding errors. 
 
The result of a 16-bit MAC operation is a single 16-bit number that represents the accumulated product 

of the two input numbers. The result can be represented in binary, decimal, or hexadecimal format, 

depending on the requirements of the application. 
 
In summary, a 16-bit MAC operation is a more precise version of the 8-bit MAC operation, involving 

the multiplication of two 16-bit numbers and accumulation of the result with a previously accumulated 

value. The result is a 16-bit number that represents the accumulated product of the two input numbers. 

The performance and accuracy of the operation depend on the speed of the multiplier and adder 

circuits, as well as the techniques used to optimize the calculation. The result can be represented in 

binary, decimal, or hexadecimal format and may require saturation and/or rounding-off depending on 

the application requirements. 
 
In conclusion, a 16-bit MAC (Multiply-Accumulate) operation is a fundamental building block of 

digital signal processing and other numerical applications that require higher precision than an 8-bit 

MAC operation. It involves multiplying two 16-bit numbers and accumulating the result with a 

previously accumulated value. The operation can be performed using a binary multiplier circuit and an 

adder circuit, and may require saturation and/or rounding-off to ensure the accuracy of the result. The 

performance of the operation depends on the speed of the circuits and the techniques used to optimize 

the calculation. The result can be represented in binary, decimal, or hexadecimal format, and is 

commonly used in various embedded systems and microcontroller-based applications. 
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CHAPTER 7 

INTRODUCTION TO VERILOG 
 

 

7.1 DEFINITION: 
 

A flip-flop, microprocessor, network switch, or other digital system can be described using Verilog, a 

HARDWARE DESCRIPTION LANGUAGE (HDL). Verilog was developed to simplify the process 

and increase the HDL's durability and adaptability. By enabling engineers to specify the functionality 

of desired hardware and letting automation tools translate that behaviour into actual hardware pieces 

like combinational gates and sequential logic, Verilog was developed to speed up the design process. 

The semiconductor industry today uses and practises Verilog more than any other HDL. Verilog has 

applications, much as every other hardware description language. It gives designers the option of 

creating designs top-down or bottom-up. 
 
Bottom-Up Design: 
 

Electronic design is traditionally done from the bottom up. Each design is carried out utilising the 

conventional gates at the gate level. With the help of this design, new structural, hierarchical design 

approaches can be created. 
 
Top-Down Design: 
 

Numerous other advantages include early testing, simple switching between different technologies, and 

structured system architecture. 
 
7.2 HISTORY OF VERILOG: 
 

The creation of a hardware description language and a logic simulator called Verilog-XL by a company 

by the name of Gateway Design Automation in the 1980s might be credited as the beginning of Verilog 

HDL. Cadence Design Systems bought Gateway in 1989, along with the licence for the language and 

simulator. The language was placed in the public domain by Cadence in 1990 with the intention of it 

becoming a widely used, non-proprietary language. Since Open Verilog International (OVI) and VHDL 

International merged, Accellera, a nonprofit company, has taken over maintenance of the Verilog HDL. 

The language had to go through the IEEE standardisation process, which was the responsibility of OVI. 

Verilog HDL became IEEE Std. 1364-1995 in December 1995. IEEE Std. 1364-2001 is a significantly 

improved version that was released in 2001. 
 
A subsequent revision was made in 2005, however it only made a few small adjustments. 
 

Additionally, Accellera has created a brand-new Verilog extension standard called System Verilog. 
 

In 2005, System Verilog was added to the IEEE standard (1800-2005). 
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7.3 USES OF VERILOG: 
 

Verilog's level of abstraction makes it difficult to understand the nuances of how it uses technology. To 

produce a positive-edge triggered FF, for example, a D flip-flop design would need to understand how 

the transistors should be arranged as well as the rise, fall, and CLK-Q times necessary to latch the value 

onto the flop. Controlling power consumption, timing, and the ability to drive nets and other flops 

would also require a deeper understanding of the physical characteristics of transistors. We can focus 

on the behaviours with Verilog and take care of the rest later. 
 
7.4 FEATURES OF VERILOG: 
➢ Verilog takes case into account.

 
 

➢ Lowercase letters are used to specify keywords in Verilog.
 

 

➢ Verilog borrows most of its grammar from the "C" language.
 

 

➢ Verilog can be used to simulate a digital circuit at the algorithm, RTL, gate, and switch levels.
 

 

➢ Verilog lacks the concept of a package but nevertheless supports modern simulation tools like 
TEXTIO, PLI, and UDPs.

 

 

7.5 DATA TYPES: 
 

Several new data types are introduced by Verilog. RTL descriptions are simpler to write and 

comprehend because to these data types. Verilog Hardware Description Language (HDL) data types are 

used to represent the data storage and transport components found in digital hardware.Data types in 

Verilog are separated into NETS and Registers. These data types represent various hardware 

architectures and differ in how values are assigned to and stored in them. 
 

There are four fundamental values in the Verilog HDL value 

set: Table 6: the description of values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.5.1 INTEGER AND REAL DATA TYPES: 
 

For the most part, C programmers are familiar with data types. The idea is that algorithms developed 

in C can be converted into Verilog if the two languages' data types are the same. Each bit in the brand-

new two-state data types that Verilog offers can only be either 0 or 1. RTL models may perform better 
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in simulators when two-state variables are used. Additionally, they have no influence on the 

synthesis's results. 
 

Table 7 : the description of types  
 
 
 
 
 
 
 
 
 
 
 

 

✓ Two-state integer types:
 

 

Unlike in C, Verilog specifies the number of bits for the fixed-width 

types Table 8 : the description of Two-state integer types 
 
 
 
 
 
 
 
 
 

 

❖ Four-state integer types:
 

 

We preferred logic because it is better than reg. We can use logic where we have used reg or 

wire. Table 9: the description of four-state integer types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.5.2 NON-INTEGER DATA TYPES: 

 

✓ Arrays:
 

 

In Verilog, variables, scalar and vector nets can all be defined. You can also define memory arrays, which 

are one-dimensional arrays of a variable type.. Verilog lifted some of the limitations on memory 
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array utilization and permitted multi-dimensional arrays of both nets and variables. This is improved 

in Verilog, which also allows for more array operations and refines the idea of arrays. Arrays in 

Verilog can have both packed and unpacked dimensions. 

 

✓ Packed dimensions:
 

 

• Are certain to be organised sequentially in memory. 
 
• Any other packed object can receive a copy of it. 
 
• It is slicable ("part-selects"). 
 
• Are limited to "bit" kinds such as bit, logic, int, etc.; some of these types, like int, have fixed sizes. 

 

✓ Unpacked dimensions:
 

 

• It can be set up in memory however the simulator sees fit. An array can be dependably copied 

onto another array of the same kind. 
 
• There are restrictions for how an unpacked type is cast to a packed type when dealing with 

arrays of various types. 
 
• On entire unpacked arrays and slices of unpacked arrays, Verilog supports a number of operations. 
 

• The arrays or slices in question for these must be of the same type and shape, i.e., have the 

same quantity and length of unpacked dimensions. 
 
• The packed dimensions can differ as long as the array or slice elements have the same number 

of bits. 
 

The permitted operations are: 
 

Reading and writing array elements, slices, and the entire array, as well as equality relations on the 

array's elements, slices, and elements. 
 

Associative arrays and dynamic arrays, both of which have variable element counts during simulation, 

are also supported in Verilog. To accommodate all of these array kinds, Verilog provides a wide 

variety of arrays of querying procedures and methods. 
 
7.6 NETS: 
 

Nets don't hold any data because they are used to connect hardware components like logic gates. The 

physical link between structural elements, such as logic gates, is represented by the net variables. 

Except for trireg, these variables don't save any values. The value of these variables' drivers is 

continuously altered by the driving circuit. Wire, tri, wor, trior, wand, triand, tri0, tri1, supply0, 

supply1, and trireg are a few examples of net data types. 
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A net data type must be used when a signal is: 
 

It is driven by some gadgets' output. 
 

It is designated as either an input or an out-of port. 
 

within a continuous assignment, on the left. 
 

 

1. Wire: 
 

A wire in a circuit acts as a fake wire when linking gates or modules. The value of a wire can be read 

but not assigned within a function or block. Because a wire cannot keep its value, it can only be driven 

by a continuous assignment statement or by connecting it to a gate or module's output. 
 

2. Wand (wired-AND) 
 

A wand's value is determined by the logical AND of all the drivers attached to it. 
 

3. Wor (wired-OR) 
 

The logical OR of all the drivers connected to wor determines its value. 
 

4. Tri (three-state) 
 

Except for the driver that decides the value of the tri, all drivers attached to it must be z. 
 

5. Supply0 and Supply1 
 

Supplies 0 and 1 specify the wires connected to logics 0 (ground) and 1 (power). 
 

7.7 REGISTERS: 
 

An instance of a data object is a register, which preserves a value for upcoming procedural 

assignments. They are only used by functions and procedural blocks. An assignment statement in a 

procedure acts as a trigger to change the value of the data storage element. 
 
Reg is not by definition a physical register in Verilog; instead, it is a variable type. Data is stored in multi-

bit registers as unsigned numbers, and no sign extension is applied to numbers that the user could have 

assumed to be two's complement. Register data types include reg, integer, time, and real. The type that is 

most frequently used is reg. Reg is the term used to describe logic. A general-purpose variable is an integer. 

In particular, loops--including indices, arguments, and constants--use them. Unlike officially specified reg 

types, which store data as unsigned numbers, they store data as signed numbers. Their size will 

automatically default to 32 bits if they store numbers that are not declared at compile time. The synthesiser 

adjusts them to the minimum width required at compilation if they hold constants in system modules real. 

Use Time and Realtime to store simulation times in test benches. The $time system task and time, a 64-bit 

quantity, can be used to store simulation time.A reg can also express combinational logic, therefore it need 

not always represent a flip-flop. At the beginning of the simulation, the reg variables are set to x. The value 

x is present in any wire variable that isn't attached to anything. During the declaration, the size of a register 

or wire may be defined. Registers and wires are designated as vectors 
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when their size is greater than one bit. 
 

7.8 VERILOG STRING: 
 

Reg is used to store strings, and the reg variable's width needs to be sufficient to hold the string. A 

string has one byte and one ASCII value for each character. Verilog truncates the string's leftmost bits 

if the variable's size is less than the string's. Verilog inserts zeros to the left of the string if the variable's 

size is greater than the string's size. 
 
7.9 LEXICAL TOKENS: 
 

Verilog's lexical rules are comparable to those of the C programming language. The source text files 

for the Verilog language are a stream of lexical tokens. One or more characters may make up a lexical 

token, and each character appears in a single token. 
 

The tokens may be strings, keywords, comments, numbers, or white space. A semicolon (;) should be 

used to end each line. A case-sensitive language is Verilog HDL. Furthermore, all terms are lowercase. 
 
White Space 
 

Tab, blank, newline, and form feed characters can all be found in white space. Except when they 

are used to divide other tokens, these characters are ignored. Tabs and blank spaces, however, 

matter in strings. 
 
Comments 
 

The remarks can be divided into two categories, including: 
 

Comments on a single line start with the symbol // and end with a carriage return. 
 

For instance, the single-line syntax is //this. 
 

The tokens /* and */ mark the beginning and end of multi-line comments, respectively. 
 

/* this is multiline syntax/, for instance. 
 

Identifiers 
 

The name given to an object, such as a module, register, or function, is its identifier. Identifiers must 

start with an alphabetical character or an underscore.A_Z and a_z, for instance.Identifiers are made up 

of an alphabetical combination, a number value, an underscore, and the symbol $. They have a 

maximum character count of 1024.Identifiers must start with an alphabetic character (a-z A-Z_) or an 

underscore. Identifiers may also include underscores, dollar signs, and alphabetic and numeric 

characters (a-z A-Z 0-9 _ $).Identifiers can have a maximum of 1024 characters. 
 
Escaped Identifiers 
 

By escaping the identification, Verilog HDL enables the use of any character in an identifier. Any readable 

ASCII character can be used in an identifier, which is what is meant by "escaped identifiers." the 

hexadecimal digits 21 through 7E, or the decimal values 33 through 126. Identifiers that have been escape 

start with a backslash (/). The backslash causes the whole identifier to escape. Commas, brackets 
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and semicolons constitute a part of the escaped identifier unless they are preceded by white space, 

which ends the escaped identifier. Put a space after any escaped identifiers. If not, characters that ought 

to come after the identifier are seen as being a part of it. 
 
7.10 OPERATORS 
 

Unique characters called operators are used to specify conditions or control variables. One, two, 

and occasionally three characters are used to control variables. 
 

1. Arithmetic Operators 
 

These operators carry out calculations. Both the + and - can be employed as binary (z-y) or unary (x) 

operators. Addition, subtraction, multiplication, division, and modulus are all arithmetic operators. 

2. Relational Operators 
 

It returns the result in single bit either 1 or 0. These are the operations : 
 

Table 10 : Relational Operators  
 
 
 
 
 
 
 
 
 
 
 

 

3. Bit-wise Operators 
 

It compares both operands bit by bit. These are the operations: 
 

Table 11 :  Bit-wise Operators  
 
 
 
 
 
 
 
 
 
 

 

4. Logical Operators 
 

Logical operators, which are bit-wise operators, only use single-bit operands. One of the two-bit values, 

0, or 1, is returned. All non-zero values can be treated as 1, and they can work with integers, bits, or 

expressions. Logical operators are usually used in conditional statements since they work with 

expressions. The following operators are a part of logical operation: 
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Table 12 :  logical Operators  
 
 
 
 
 
 

 

5.Reduction Operators 
 

Reduction operators work on all the bits in an operand vector and are the unary version of bitwise 

operators. These also give off a value of one bit. The following operators are a part of the reduction 

operation: 
 

Table 13 :  Reduction Operators  
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Shift Operators 
 

Shift operators shift the first operand by the number of bits indicated by the second argument in 

the syntax. Zeros are substituted for empty positions in both left and right shifts (sign extension is 

not used). The following operators work during shifts: 
 

Table 14 :  Shift Operators  
 
 
 
 

 

7. Concatenation Operator 
 

In order to create a larger vector, the concatenation operator joins two or more operands together. 

The following operator is a part of the concatenation operation: {} 
 
8. Replication Operator 
 

The replication operator duplicates an item in many ways. The Replication operation's operator is: 
 

{n{item}} (n fold replication of an item) 
 

9. Conditional Operator 
 

A multiplexer is created using the conditional operator. It is of the same type as that used in C/C++ and 

evaluates one of the two expressions based on the condition. Conditional operations employ the 

following operator: (Condition)?: 
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7.11 OPERANDS 
 

Expressions or values that an operator manipulates or performs operations on are referred to as operands. 
 

Every expression requires at least one operand. 
 

1. Literals 
 

In Verilog expressions, literals are operands with constant values. The following are the top two 

Verilog literals: 
 
String: A literal string operand is a one-dimensional array of letters enclosed in double quotation marks 
 

(""). 
 

Numeric: The operand's constant number is given as a binary, octal, decimal, or hexadecimal number. 
 

2. Wires, Regs, and Parameters 
 

Data types such as wires, regs, and parameters are utilised as operands in Verilog expressions.. "x [2]" 
 

for both the bit- and part-selection and "x [4:2]" 
 

Square brackets ("[]") are used to choose one bit or several bits from a wire, a set of rules, or a 

parameter vector, respectively. 
 

3. Function Calls 
 

Function calls employ the return value of a function directly, as opposed to assigning it to a register or 

wire beforehand. Simply listed as one of the types of operands is the function call. It is useful to know 

the bit width of the return value from the function call. 
 

7.12 VERILOG MODULE: 
 

A piece of code that implements a certain feature is known as a Verilog module. Modules can be 

embedded within other modules, and a higher-level module's input and output ports can be used to 

communicate with its lower-level modules. 
 

Syntax 
 

A piece of code that implements a certain feature is known as a Verilog module. Using its input and 

output ports, a higher-level module can communicate with its lower-level modules, and modules can be 

nested inside of other modules. 
 
Purpose of a Module 
 

During synthesis, a module is a design element that carries out a specific set of behavioral 

characteristics before being converted into a digital circuit. Any number of inputs may be provided to 

the module, and it will output data in response.It makes it possible to reuse a module to build bigger, 

more significant modules that utilise more advanced hardware. 
 
Hardware Schematic 
 

The technique can be reversed as opposed to using smaller design blocks as a foundation for larger 

ones. Consider dividing a simple GPU engine into smaller components. 
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CHAPTER 8 
 

HARDWARE IMPLEMENTATION  
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Fig.8 Hardware implementation of the proposed multiplier 
 

BASYS 3 ARTIX-7 FPGA BOARD 
 

An entry-level FPGA development board with the Xillinx Artix 7 FPGA architecture, the Basys 3 was 

created specifically for the vivado design suite. 
 

The Basys 3 has the same functionalities that are present on all Basys boards. All necessary FPGA 

support circuits, fully functional hardware that is ready to use, a sizable collection of hardware, a 

sizable collection of on-board input-output devices, and a free version of development tools. The use of 

Basys 3 board in this project and the salient features are 
 

• Inputs are given to the switches and each binary digit used as a one switch. 
 

• Total 8x8 switches are used. Multiplier is used for remaining 8 switches. 
 

• Output are represented by the LEDs. 
 

• In this project USB connection is used.  
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• Switch acts as Input and Output indicated by LEDs. 
 

• For the proper use of vivado, follow the 

steps: (i)Achieve the bitstream successfully. 

(ii)Connecting the hardware manager. 

 

 

1) 00001101 x 11010010 => 0000101010101010 In Binary Form 
 

13 x 20 => 2730 In decimal Form 
 

2) 01010111 x 01101011=> 0010010001011101 In Binary Form 
 

87 x 107 => 9309 In Decimal Form 
 

3) 00001111 x 00001111 => 0000000011100001 In Binary Form 
 

15 x 15 => 225 In decimal Form 
 

4) 00000001 x 00000011 => 0000000000000011 In Binary Form 
 

1 x 3 => 3 In Decimal Form 
 

5) 11111111 x 11111111 => 1111111000000001 In Binary Form 
 

255 x 255 =>65025 In Decimal Form 
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CONCLUSION 
 

In this project , a 8-bit MAC and 16-bit MAC are designed with successful implementation 8-bit and 16-bit 

proposed multiplier. The proposed multiplier was synthesized in different FPGA families using the Xilinx 

tool and the response of each FPGA platform was observed. In the proposed 16-bit multiplier, it is 

concluded that multiplier implementation using Artix 7 offers optimized results in terms of power when 

compared to other FPGA families. When compared to other FPGA families, the number of occupied 

segments is lower when using Vertex-6 FPGA. Virtex 7 produces optimized outcomes in terms of gate 

delay, logic delay, and route delay. According to the findings, implementing a 8-bit multiplier using Virtex-

6 (lower power) offers optimised results in terms of area, delay, and power when compared to other FPGA 

families. We can see that using Vertex-6 (lower power) FPGA results in increase in delay and a reduction in 

area when compared to Artix 7, and Spartan 6. Spartan 6 and Artix 7 outperform the Virtex 6 family in 

terms of battery consumption.The compressors in this proposed multiplier are used in such a way that the 

size of the compressor is determined by the entire sum of both input bits and carry bits propagated to that 

level. By deciding on the compressor in this manner, the area of the suggested multiplier unit is reduced.To 

obtain the results of 16 bit multiplication, different compressors such as 4:2, 5:2, 7:2, and other higher order 

compressors are used at various positions in the proposed multiplier. 
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