
 DESIGN AND IMPLEMENTATION OF AREA EFFICIENT

MULTIPLY-ACCUMULATE UNIT

A Project report submitted in partial fulfilment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

P.SAI RAM(319126512170)

K.MANI KUMAR (320126512L17)

Y.SURESH REDDY (320126512L19)

B.UDAY NARAYANA (319126512136)

Under the guidance of

Dr.K.V.Gowreesrinivas

Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’

Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam dist.(A.P)(2022-2023)

i

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr.K.V.Gowreesrinivas

Assistant professor, Department of Electronics and Communication Engineering, ANITS, for his

guidance with unsurpassed knowledge and immense encouragement. We are grateful to Dr.

B.Jagadeesh, Head of the Department, Electronics and Communication Engineering, for

providing us with the required facilities for the completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa , for their

encouragement and cooperation to carry out this work.

We express our thanks to all Teaching faculty of Department of ECE, whose suggestions during

reviews helped us in the accomplishment of our project. We would like to thank all non-

teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement throughout

our project period. Last but not the least, we thank everyone for supporting us directly or

indirectly in completing this project successfully.

PROJECT STUDENTS

P SAI RAM(319126512170)
K MANI KUMAR (320126512L17)
Y SURESH REDDY (320126512L19)
B UDAY NARAYANA (319126512136)

iii

 CONTENTS

LIST OF FIGURES

Vi

LIST OF TABLES viii

ABSTRACT ix

CHAPTER 1 INTRODUCTION 1

1.1 Project Objective 1

1.2 Project Outline 2

CHAPTER 2 VEDIC MATHEMATEMATICS 3

2.1 Introduction to Vedic Mathematic 3

2.2 Sixteen Sutras 4

2.3 Vedic Mathematics Sutras 4

CHAPTER 3 MULTIPLIERS 7

3.1 Introduction to Multipliers 7

3.2 Proposed Multiplier 8

3.3 Working of Multiplier 9

CHAPTER 4 INTRODUCTION TO COMPRESSOR 11

ADDERS

4.1 Compressor adders 11

4.2 Varieous types of compressor adders

 4.2.1 4:2 compressor adder 11

 4.2.2 5:2 compressor adder 11

 4.2.3 6:2 compressor adder 12

 4.2.4 7:2 compressor adder 12

 4.2.5 8:2 compressor adder 13

 4.2.6 9:2 compressor adder 14

 4.2.7 10:2 compressor adder 15

 4.2.8 11:2 compressor adder 15

CHAPTER 5 ADDER UNIT : 17

5.1 Introduction to adder unit 17

5.2 Carry select adder 18

iv

CHAPTER 6 RESULTS 19

6.1 Simulation Results of 8 bit multiplier 19

 6.1.1 Comparison Environment 21

6.2 Simulation Results of 16 bit multiplier 22

 6.2.1 Comparison Environment 23

6.3 Simulation Results of 8-bit MAC 24

6.4 Simulation Results of 16-bit MAC 26

CHAPTER 7 INTRODUCTION TO VERILOG 29

7.1 Definition 29

7.2 History of Verilog 29

7.3 Uses of Verilog 30

7.4 Features of Verilog 30

7.5 Data types 30

 7.5.1 Integer and Real Data Types 30

 7.5.2 Non-integer data types 31

7.6 Nets 32

7.7 Registers 33

7.8 Verilog String 34

7.9 Lexical Tokens 34

7.10 Operators 35

7.11 Operands 37

7.12 Verilog Module 37

CHAPTER 8 HARDWARE IMPLEMENTATION 39

CONCLUSION 42

REFERENCES 43

v

List of Figures

● Figure 3.2.1: Design of Proposed Multiplier……………………………………………..……10

● Figure 3.3.1: Example of 8-bit multiplication………………………………………..………..11

● Figure 4.2.1: 4:2 compressor adder……………………………………………………..……..11

● Figure 4.2.2: 5:2 compressor adder……………………………………………………..……..12

● Figure 4.2.3: 6:2 compressor adder……………………………………………………..……..12

● Figure 4.2.4: 7:2 compressor adder……………………………………………………..……..13

● Figure 4.2.5 : 8:2 compressor adder……………………………………………..…………….14

● Figure 4.2.6 : 9:2 compressor adder…………………………………………………..……….15

● Figure 4.2.7 10:2 compressor adder……………………………………………………..…….15

● Figure 4.2.8 11:2 compressor adder………………………………………………………..….16

● Figure 5.2.1 internal blocks of carry select adder………………………………………….….18

● Figure 6.1.1 Simulation waveform of 8-bit multiplication……………………………………19

● Figure 6.1.2 RTL diagram of 8-bit multiplication…………………………………………….19

● Figure 6.1.3 Synthesized schematic of 8-bit multiplication……………………………………....20

● Figure 6.1.4 power report and LUTs utilized for 8-bit multiplication……………………….20

● Figure 6.2.1 Simulation waveform of 16-bit multiplication…………………………………..22

● Figure 6.2.2 RTL diagram of 16-bit multiplication…………………………………………...22

● Figure 6.2.3 Synthesized schematic of 16-bit multiplication……………………………………..22

● Figure 6.3.1 Simulation waveform of 8-bit MAC…………………………………………….24

● Figure 6.3.2 RTL diagram of 8-bit MAC………………………………………………….………24

● Figure 6.3.3 Synthesized schematic of 8-bit MAC………………………………….………..24

vi

● Figure 6.3.4 LUTs utilized for 8-bit MAC……………………………………………………25

● Figure 6.3.5 power report for 8-bit MAC……………………………………………………..25

● Figure 6.4.1 Simulation waveform of 16-bit MAC…………………………………………...26

● Figure 6.4.2 RTL diagram of 16-bit MAC……………………………………………………26

● Figure 6.4.3 Synthesized schematic of 16-bit MAC…………………………………………27

● Figure 6.4.4 LUTs utilized for 16-bit MAC …………………………………………………27

● Figure 6.4.5 power report for 16-bit MAC…………………………………………………...27

vii

List of Tables

• Table 1: 16 sutras from the vedas………………………………………………………………4

• Table 2 : Manual Resourse utilization of 8-bit proposed multiplier…………………………...21

• Table 3 : Comparision among various fpga families…………………………………………..21

• Table 4 : Comparision among various fpga families…………………………………………..23

• Table 5 : Manual Resourse utilization of 8-bit proposed multiplier…………………………...23

• Table 6 : The Description of values……………………………………………………………30

• Table 7: The Description of types……………………………………………………………...31

• Table 8 : The Description of two-state integer types…………………………………………..31

• Table 9 : The Description of four-state integer types………………………………………….31

• Table 10 : Relational Operators………………………………………………………………..35

• Table 11 : Bit-wise Operators………………………………………………………………….35

• Table 12 : Logical Operators…………………………………………………………………..36

• Table 13 : Reduction Operators……………………………………………………………….36

• Table 14 : Shift Operators……………………………………………………………………..36

viii

ABSTRACT

The objective of this paper is to propose an 8-bit MAC using FPGA. In Conventional multiplier, there

are many partial steps which reduce the computational speed of a multiplier. Along with accuracy

demand for minimizing area, power, and delay of the processor by enhancing speed is the focus point.

Vedic mathematics rules and algorithms generate partial products concurrently and save time. The

multipliers performance in terms of latency, power, and area is determined by the number of stages used

to sum the partial products. In this paper, a new architecture of Vedic multiplier is introduced which

reduces the area and increase the speed when compared to the conventional Vedic multiplier. The

proposed model is simulated and synthesized using Xilinx Vivado on different FPGA families and

delay, area and power are observed. The conclusion drawn from observing the result is that

implementation of multiplier using Virtex-6 (lower power) provides optimized outputs in terms of area,

delay and power. The model is also implemented on Basys3 Artix7 FPGA with the help of Xilinx

Vivado and verified the functionality of the proposed model

ix

 CHAPTER-1

INTRODUCTION

One of the most frequently utilized arithmetic knowledge paths in contemporary digital design is

the multiplier. An essential and computationally demanding process is multiplication. Several

components of a digital system or computing device, most notably signal processing, graphics,

and scientific calculation, all benefit from the multiplication operation. The Booth algorithmic

programme could be a significant advancement in the signed binary multiplication method. In

many digital signal processing (DSP) applications involving multiplications and/or

accumulations, MAC units are a necessary component. MAC unit [1] is used for high-

performance digital signal processing systems. The execution speed and performance of the

complete calculation are determined by the multiplication and addition arithmetic speed since

they are essentially performed by repetitive application of multiplication and addition. As a

result, the MAC unit's capabilities enable high-speed filtering and other processing that is typical

of DSP applications. A multiplier and an accumulator holding the total of the prior sequential

products make up a MAC unit. The design of a high-performance 64-bit Multiplier-Accumulator

(MAC) is implemented using Verilog HDL . Due of their greater speed performance, compressor

adders have been chosen for this method over traditional half-adder and full adder architectures.

These compressors behave like adders because they actually serve as counters, counting the

number of ones in the input bits. In addition to half-adders and full adders, they use multiplexers,

which enable the use of smaller XOR gates and hence higher speed. Some carries are also

produced with each resulting bit, which is used to calculate the following final product bits.

1.1 PROJECT OBJECTIVE:

The primary goal of this project is to research, construct, and analyses a higher order compressor

adder 16-bit MAC unit using VLSI (Very Large-Scale Integration) design. Xilinx Vivado is used

for the Synthesis and Implementation of various compressor adder types. Power, area, and delay

comparisons are made for the performance.

1

1.2 PROJECT OUTLINE:

This project report is presented over the 6 remaining chapters.

Chapter 2 presents Introduction to Vedic Mathematics

Chapter 3 explains Introduction to Multipliers .

Chapter 4 is about Introduction to Compressor Adders and its different types.

Chapter 5 introduction to adder unit

Chapter 6 results

Chapter 7 introduction to Verilog

Chapter 8 xilinx software

Finally, the results of the project work and conclusions are drawn.

2

CHAPTER 2

INTRODUCTION TO VEDIC MATHEMATICS

In this chapter, we merely review a few ideas that were previously covered in the Vedic Mathe

matics textbook published by Jagadguru Swami Sri Bharati Krsna Tirthaji Maharaja (Sankarach

arya of Govardhana Matha, Puri, Orissa, India), General Editor, Dr. V.S. Agrawala.Quick overv

iew of his background before.He was born to highly educated and religious parents in March18

84At Tinnevelly (Madras Presidency), his father Sri P Narasimha Shastri served as a Tahsildar

before retiring as a Deputy Collector.His greatgrandfather was Justice C. Ranganath Shastri of t

he Madras High Court, and his uncle, Sri Chandrasekhar Shastri, served as the principal of the

Maharajas College at Vizianagaram.He attended the Hindu College Tinnivelly, Church Mission

ary Society College, and National College Tiruchirapalli in Tamil Nadu.He topped the list after

he successfully completed the Madras University matriculation exams .In July 1899, the Madra s

Sanskrit Association bestowed upon him the title of "Saraswati" in recognition of his exceptio

nal command of Sanskrit.After placing first in the B.A. test, Sri Venkataraman applied from th e

Bombay Centre for the M.A. examination at the American College of Sciences, Rochester, Ne w

York, in 1903.Sanskrit, philosophy, english,mathematics, history, and science were among th e

subjects he was tested on.He had an excellent memory.He abruptly left his position as a teach er

in 1911 because he was unable to contain his burning desire for spiritual knowledge, practise and

attainment at that time. He returned Sacchidananda Shivabhinava Nrisimha Bharati Swam i in

Sringeri.The following eight years were devoted to his indepth study of the Brahmasadhana

practise and the most cuttingedge Vedanta philosophy. He was appointed to the pontifical throne

of Sharada Peetha Sankaracharya in 1921 after serving for a period. Later, in 1925, he was made

pontifical head of Sri Govardhan Math Puri, where he spent the remainder of his life.When he

eventually made the decision to travel to the United States in 1957, he rewrote the current

volume of Vedic Mathematics from memory, providing an overview of the sixteen equa tions he

had successfully recreated.The 16 sutras (aphorisms or formulae) and their corollaries a re now

provided.According to the editor, the text's introduction includes a list of the primary 16 sutras

and any subsutras or corollaries.

The wording also suggests that Sri Swamiji was responsible for their discovery.The editor also

3

believes that since each educated reader should be able to uncover the immense merit of these g

uidelines, it is unnecessary to dwell any longer on this point of origin.

Table 1: 16 sutras from the Vedas

4

The fundamental formula is supplied by the phrase "URDHVA TRIYAKBHYAM," which transl

ates to "Vertical crosswise Urdhvatriyakbhyam sutra." This formula is applicable to all circumsta

nces of multiplication and will subsequently prove to be very helpful in the division of a huge nu

mber by another large number.Since there is only one compound word in the entire formula, it is

incredibly condensed and simply says, "vertically and crosswise. "This succinct sutra has a wide

range of uses. This sutra was selected because it offers a general formula that can be applied to

all multiplication scenarios (large bit multiplication, small bit multiplication, and modular

multiplication), and it is also very compact when dividing a large number by another large number,

such as when dividing a 15-digit number by a 5-digit number.

The underlying mathematic operation is described as follows.

Multiplication Using UrdhvaTriyakbhyamSutra:

Assume we must divide (ax+b) by (cx+d). acx2 + x(ad+bc) + bd is the result. These steps can be

taken to get this: The vertical multiplication of a and c yields the coefficient of x2 in step 1.

Step 2: The coefficient of x is derived by adding the two products of the crosswise multiplication

of a and d and b and c.

Step 3: The absolute terms b and d are vertically multiplied to obtain the independent term.

The modus operandi thereof will be made clear by a straightforward illustration. Imagine that we

need to multiply 12 by 13.

The leftmost part of the answer is calculated by multiplying the leftmost digit 1 of each of the 12

Multiplicands vertically by the leftmost digit 1 of the multiplier, yielding the product 1 1:3 + 2:6 = 156.

The middle and rightmost parts of the answer are calculated as follows:

• We multiply 1 and 3 and 1 and 2 crosswise add the two to get 5 as sum.

• We multiply 2 and 3 vertically to get 6 as their product. Thus 12 ´ 13 = 156.

Example of 8X8 bit multiplication:

Let A be the 8-bit multiplicand and B be the 8-bit multiplier. These can be further divided into 4-

bit terms as shown below:

A = A7A6A5A4 A3A2A1A0

X1 X0

B = B7B6B5B4 B3B2B1B0

Y1 Y0

SoA = X1 X0 (8 bit Multiplicand) B = Y1Y0 (8 bit Multiplier where X1, X0, Y1,

5

Y0 are each of 4-bits. Multiplying, we get a 16-bit product, which is further divided

into 4 four-bit terms, F, E, D, C.

X1 X0 x Y1Y0 = F E D C

1. CP = X0 x Y0 = C.

2. CP = X1 x Y0 + X0 x Y1 = D

3 CP = X1 x Y1 = F E

where F is the carry of the product of X1 x Y1 and CP is the cross product

Note:

1. Each multiplicand is a parallel 4 x 4 multiply module that is implanted. Each of the multiplication
modules generates a carry, which is carried over to the following module.
2. This multiplier architecture benefits from reduced gate delays and more structural regularity.
Examples are used to further clarify the procedure. Decimal numbers are used to illustrate two- and three-

digit multiplication examples, and lines are used to represent the multiplication operation. The line's digits are

multiplied, the result is added to the carry from the previous carry, and the procedure is repeated.

6

CHAPTER 3

PROPOSEDMULTIPLIER

3.1 INTRODUCTION

Numerous modern applications, including digital signal processing, rely significantly on

multipliers. With the development of technology, many researchers have tried and are still

trying to create multipliers that provide one or more of the following design goals: high

speed, low power consumption, regularity of layout and thus less area, or even a combination

of them in one multiplier, making them suitable for various high speed, low power, and

compact VLSI implementation.

The "add and shift" algorithm is a popular technique for multiplying numbers. The required

number of partial products has a significant impact on the performance of parallel multipliers.

One of the most widely used algorithms is the Modified Booth method, which lowers the

amount of incomplete products that must be added.

Improving speed is the goal. One method for reducing the number of sequential addition

stages is to use the Wallace Tree algorithm. Additionally, we can observe the benefits of both

algorithms in a single multiplier by combining the Wallace Tree methodology and the

Modified Booth algorithm.

The processing could get slower as parallelism is raised since there will be more shifts

between the partial products and intermediate sums that need to be added. It could also result

in an increase in silicon area due to irregular structure, as well as a rise in power consumption

due to an increase in interconnect from complex routing.

However, "serial-parallel" multipliers give up speed for improved performance in terms of

space and power usage. We describe the architecture and methods for multiplying numbers

and contrast them in terms of their speed, area, power, and mashups of these measures.

7

3.2 PROPOSED MULTIPLIER:

Fig 3.2.1 design of propose multipier

In this proposed multiplier, we have used Vedic Multiplication method to design an area-efficient

multiplier,as Vedic multiplication is more efficient when compared toother multipliers. We have

designed this multiplier uusing compressorsto reduce the partial products in multiplication.This model

consists of various compressors which produce the output in single stages without any partial steps.In

normal multiplier methods there are many partial steps which increases the computational speed of a

multiplier. So using Vedic Multiplication with compressors reduce the area of the multiplier unit. In

this design, the output of the respective bits depend only on the previous carry bits and input bits of that

particular stage and do not depend on the carry bits of other stages. Here the carry bits generated in the

particular stage will get added up all together to the next respective input bits. So in this way carry

propagation takes place in the proposed multiplier which is quite different from the existing models. In

the existing models if the carry bits generated at the stage is more than the one then the carry bits are

propagated to each and every upcoming stages in a linear fashion which makes the upcoming stages not

only depend on the previous carry bits but also on the other carry bits. The size of the compressor

depends on the total sum of the input bits and the carry bits transmitted to that specific stage in the

compressors employed in this proposed multiplier. The intended multiplier unit's area will be reduced

by choosing the compressor in this way.

In the proposed multiplier, various compressors such as 4:2 ,5:2, 7:2 compressors and other higher

order compressors are used at certain positions to get the results of 16 bit multiplication.

The block diagram of our proposed multiplier is shown in fig-10. In the fig-10 we can see that there are

various compressors used based on input and carry bit size.

The arrows in fig-10 which are in green, brown and red represents input, carry, zero bits.

8

EQUATIONS:

Let X and Y are two 8 bit binary inputs and S is the output of size 16 bits.

1.S0 = X0Y0

2.S1 = X1Y0 + X0Y1 (C0)

3.S2 = X2Y0 + X1Y1 + X0Y2 + C0 (C1, C2)

4.S3 = X3Y0 + X2Y1 + X1Y2 + X0Y3 + C1 + C2 (C3, C4, C5)

5.S4 = X4Y0 + X3Y1 + X2Y2 + X1Y3 + X0Y4 + C3 + C4 +C5 (C6,C7, C8, C9)

6.S5 = X5Y0 + X4Y1 +X3Y2 +X2Y3 +X1Y4 +X0Y5 + C6 +C7 +C8+ C9 (C10, C11, C12, C13, C14)

7.S6 = X6Y0 + X5Y1 +X4Y2 +X3Y3 + X2Y4 +X1Y5 + X0Y6 +C10+C11 +C12 +C13 +C14

(C15,C16,C17,C18,C19,C20)

8.S7 = X7Y0+X6Y1 + X5Y2 +X4Y3 + X3Y4 + X2Y5 +X1Y6 +

X0Y7+C15+C16+C17+C18+C19+C20 (C21,C22,C23,C24,C25,C26,C27,C28)

9.S8 = X7Y1 + X6Y2 + X5Y3 + X4Y4 + X3Y5 + X2Y6 + X4Y7

+C21+C22+C23+C24+C25+C26+C27+C28 (C29,C30,C31,C32,C33,C34,C35,C36)

10.S9 = X7Y2 + X6Y3 + X5Y4 + X4Y5 +X3Y6 + X2Y7 + C29+C30+C31+C32+C33+C34+C35+C36

(C37,C38,C39,C40,C41,C42,C43)

11.S10 = X7Y3 + X6Y4 + X5Y5 + X4Y6 + X3Y7 + C37+C38+C39+C40+C41+C42+C43

(C44,C45,C46,C47,C48,C49)

12.S11 = X7Y4 + X6Y5 + X5Y6 + X4Y7 + C44 +C45+C46+C47+C48+C49 (C50,C51,C52,C53,C54)

13.S12 = X7Y5 + X6Y6 + X5Y7 +C50+C51+C52+C53+C54 (C55,C56,C57,C58)

14.S13 = X7Y6 + X6Y7 +C55+C56+C57+C58(C59,C60,C61)

15.S14 = X7Y7 + C59+C60+C61 (C62,C63)

16.S15 = C62 + C63 (C64).

In this method, various higher order compressors were involved in performing multiplication as per

Vedic algorithm. Here, we take two 8-bit binary values, X7 to X0 and Y7 to Y0, where 0 to 7 denote

the bits from least to greatest significance and S15 to S0 denote the binary output bits acquired when X

and Y are multiplied. The output bits S0 to S15 are computed by using the partial products which are

obtained by performing logical “AND” operation between the input bits. While adding the partial

products in each stage, the carry bits from C0 to C64 are generated and these carry bits are propagated

in such a manner that all the carry bits generated at the stage are propagated to the next upcoming

stage. C64 carry bit is neglected as it is superfluous. The individual bits which are obtained from the

below mentioned equations are concatenated, which in turn produces the final output of multiplication.

9

3.3 WORKING OF MULTIPLIER:

Fig 3.3.1 multiplication of 11111111 x 11111111

EXAMPLE:

From figure 10, it is observed that two 8-bit numbers i.e.(11111111 x 11111111) are multiplied using

the proposed model and verified the output using simulation tool. Here in fig 11, the number of carry

bits generated at right second most stage is one and that is added to the next upcoming stage and

relevant compressor is used for addition at that stage. Similarly the carry bits generated at right third

most stage are two and those two carry bits simultaneously added up to the next upcoming stage

without any further propagation of the carry and relevant compressor is used at that particular stage.

This process will continue till the last stage and output of the two input binary numbers are computed

successfully. By propagating all the carry bits at a time without any delay we can reduce the delay time

of the multiplier and by using relevant compressors at each and every stage of the process we can

reduce the area of the multiplier

10

CHAPTER-4

INTRODUCTION TO COMPRESSOR ADDERS

4.1 COMPRESSOR ADDERS

In contrast to combinational circuits of half and full adders, compressor adders are fundamental circuits

that add bits more than four at a time to produce better delay outcomes. The symbol for compressor

design is N r, where 'N' stands for the number of bits fed in and 'r' stands for the overall number of 1s

found in N bits. In contrast to adder circuits, it actually reduces gate counts and latency, hence the term

compressor. The circuits of lower compressors have been improved in significant part through study.

Higher compressors are also used in conjunction with this to add more bits. The most popular

compressor architectures are 4-2,7-2, 5-3, 10-4, 15-4, and 20-5.

4.2 VARIEOUS TYPES OF COMPRESSOR ADDERS

4:2 COMPRESSOR ADDER: As the name suggests, a 4-2 compressor reduces four inputs plus one

carry bit from the preceding column to two outputs (Sum and Carry) and one intermediate carry bit

(Cout), which is sent as Cin to the following column.

The mathematical link between the input and output of the 4-2 compressor is Cin+X4+X3+X2+X1 =

Sum+2(Carry+Cout). Implementing a 4-2 compressor with basic cascading of complete adders results

in a critical path delay of four XOR gates, as shown in Fig. This 4-2 compressor is regarded as a classic

type because, as illustrated in Fig. 2, logical optimisation decreases the critical route time to three XOR

gates.

The traditional 4-2 compressor's Boolean equations are as follows: Sum = Cin X4 X3 X2 X1 Carry =

(X4 X3 X2 X1) Cin + (X4 X3 X2 X1) X4 Cout = (X2 X1) X3 + (X2 X1) X1

Fig 4.2.1 4:2 compressor adder

5:2 COMPRESSOR ADDER: There are two phases in a 5-2 compressor adder. The groups of two

bits are added in the first stage using four half-adders. The carry bits are forwarded to the second stage,

and the sum bits are merged to yield a 3-bit result. The carry bits from the first stage and the remaining

bits of the input numbers are added together in the second stage using two full-adders. A 6-bit result

that represents the sum of the two input numbers is the second stage's output. The 5-2 compressor adder

is a straightforward and effective method for adding two 5-bit values. It is frequently utilised in digital

11

circuits where efficiency and speed of operation are crucial factors.

Fig 4.2.2 5:2 compressor

6:2 COMPRESSOR ADDER: The 6-2 compressor adder consists of three stages. In the first stage, six

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by

each half-adder. The carry bits are forwarded to the second stage, and the total bits are merged to yield a 5-

bit result. The carry bits from the first stage and the remaining bits of the input numbers are added together

in the second stage using three full-adders. A 5-bit result representing the sum of the two input numbers

plus the carry bits from the first stage is the result of the second stage. The carry bit from the second stage

and the last bit of the input numbers are added together in the third stage using a final full-adder. A 7-bit

result that represents the sum of the two input numbers is the third stage's output.

Fig 4.2.3 6:2 compressor

7:2 COMPRESSOR ADDER: The 7:2 compressor, as depicted in Figure 6, works similarly to its 4:2

counterpart in that it may add 7 bits of input data and 2 carries from earlier stages at once. In our

approach, two 4:2 compressors, two full adders, and one half adder are combined to create a novel 7:2

compressor. Fig. 7 depicts the architecture for the same. As mentioned earlier, the adoption of the 4:2

compressor in this architecture would boost efficiency as contrasted to the conventional way of adding

nine bits at a time using only full adders and half adders because the 4:2 compressor demonstrates a

sizable speed gain of approximately 66.6%. This causes the processor's speed to improve greatly.

12

Fig 4.2.4 circuit diagram of 7:2 compressor adder

8:2 COMPRESSOR ADDER: A The 8-2 compressor adder consists of four stages. In the first stage, eight half-

adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by each half-adder.

The carry bits are forwarded to the second stage, and the total bits are merged to yield a 7-bit result.The carry bits

from the first stage and the remaining bits of the input numbers are added together in the second stage using four full-

adders. The output of the second stage is a 6-bit result that represents the sum of the two input numbers plus

the carry bits from the first stage.In the third stage, two full-adders are used to add together the carry bits

from the second stage along with the remaining bits of the input numbers. The output of the third stage is a

7-bit result that represents the sum of the two input numbers plus the carry

13

bits from the first and second stages.Finally, in the fourth stage, a final full-adder is used to add

together the carry bit from the third stage along with the remaining bit of the input numbers. The output

of the fourth stage is a 9-bit result that represents the sum of the two input numbers.The 8-2 compressor

adder is a more complex circuit than the 5-2 and 6-2 compressor adders, but it is still an efficient way

to perform addition of two 8-bit numbers. It is commonly used in digital circuits where low power

consumption and fast operation are important considerations.

Fig 4.2.5 8:2 compressor adder

9:2 COMPRESSOR ADDER: The 9-2 compressor adder consists of five stages. In the first stage, 10

half-adders are used to add together the groups of two bits. Each half-adder produces a sum bit and a

carry bit. The sum bits are combined to produce an 8-bit result, while the carry bits are passed on to the

second stage.

In the second stage, five full adders are used to add the carry bits from the first stage and the remaining

bits of the input numbers. The output of the second stage is a 7-bit result that represents the sum of the

two input numbers plus the carry bits from the first stage. In the third stage, threefull adderss are used

to add the carry bits from the second stage and the remaining bits of the input numbers.

The output of the third stage is an 8-bit result that represents the sum of the two input numbers plus the

carry bits from the first and second stages. In the fourth stage, twofull adderss are used to add the carry

bits from the third stage and the remaining bits of the input numbers.

The output of the fourth stage is a 9-bit result that represents the sum of the two input numbers plus the

carry bits from the first, second, and third stages. Finally, in the fifth stage, a final full-adder is used to

add together the carry bit from the fourth stage along with the remaining bit of the input numbers. The

output of the fifth stage is a 10-bit result that represents the sum of the two input number.

14

Fig 4.2.6 9:2 compressor adder

10:2 COMPRESSOR ADDER: The 10-2 compressor adder consists of six stages. In the first stage, 11

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced

by each half-adder. The carry bits are forwarded to the second stage, and the sum bits are merged to

yield a 9-bit result. The carry bits from the first stage and the remaining bits of the input numbers are

added in the second stage using five complete adders. An 8-bit result representing the sum of the two

input integers plus the carry bits from the first stage is the outcome of the second stage. The carry bits

from the second standits of the input numbers are added together in the third stage using three full-

adders. A 9-bit result representing the sum of the two input numbers plus the carry bits from the first

and second stages is the third stage's output. The carry bits from the third stand it sits of the input

numbers are added together in the fourth stage using two full-adders. The output of the fourth stage is a

10-bit result that represents the sum of the two input numbers plus the carry bits from the first, second,

and third stages. In the fifth stage, a full-adder is used to add together the carry bit from the fourth stage along

with the remaining bit of the input numbers. The output of the fifth stage is an 11-bit result that represents the

sum of the two input numbers plus the carry bits from the first, second, third, and fourth stages. Finally, in the

sixth stage, another full-adder is used to add together any remaining carry bits from the previous stages.

The output of the sixth stage is the final 11-bit result.

 Fig 4.2.7 10:2 compressor adder

15

11:2 COMPRESSOR ADDER: The 11-2 compressor adder consists of seven stages. In the first stage, 12

half-adders are used to add together the groups of two bits. Both a carry bit and a sum bit are produced by

each half-adder. The carry bits are sent to the second stage, and the total bits are merged to yield a 10-bit

output.The carry bits from the first stage and the remaining bits of the input numbers are added in the

second stage using five full-adders. A 9-bit result representing the sum of the two input numbers plus the

carry bits from the first stage is the result of the second stage.The carry bits from the second stage are

combined with the remaining bits of the input numbers in the third stage using three full-adders. The output

of the third stage is a 10-bit result that represents the sum of the two input numbers plus the carry bits from

the first and second stages. In the fourth stage, two full-adders are used to add together the carry bits from

the third stage along with the remaining bits of the input numbers. The output of the fourth stage is an 11-bit

result that represents the sum of the two input numbers plus the carry bits from the first, second, and third

stages.In the fifth stage, another full-adder is used to add together the carry bit from the fourth stage along

with the remaining bit of the input numbers. The output of the fifth stage is a 12-bit result that represents the

sum of the two input numbers plus the carry bits from the first, second, third, and fourth stages.The sixth

and seventh stages are used to propagate the carry bits and ensure that the final result is correctly calculated.

In the sixth stage, a carry-lookahead adder is used to propagate the carry bits from the previous stages. In

the seventh stage, an additional full-adder is used to combine the carry bits with the final result and produce

the correct 12-bit output.

Fig 4.2.8 circuit diagram of 11:2 compressor adder

16

CHAPTER 5

ADDER UNIT

5.1 INTRODUCTION:

A digital circuit known as an adder is used to add two binary digits. One of the most basic arithmetic

circuits used in digital systems is this one. Most digital systems, such as microprocessors, digital signal

processors, and other digital circuits, use adders.

An adder generates a sum output from two binary inputs of 1s and 0s each. The fundamental working of an

adder is that it adds the two inputs bit by bit, beginning with the least significant bit (LSB), propagating the

carry to the next significant bit (NSB), and so forth, until it reaches the most significant bit (MSB).

There are various varieties of adders, including full, ripple, carry-lookahead, carry-select, and half-

adders. Depending on the needs for speed, area, power, and complexity, several types of adders are

employed in different applications. Each form of adder has advantages and disadvantages of its own.

In digital systems, adders are a fundamental building component for arithmetic operations and are

important for carrying out numerous arithmetic and logical processes. They are also utilised in

numerous other fields of digital electronics, including digital signal processing, computer graphics, and

cryptography.

5.2 CARRY SELECT ADDER :

To add two binary numbers, a carry-select adder (CSLA), a form of digital adder, is employed.

Because it can add several bits simultaneously, decreasing the delay time and accelerating adding

speed, it is a faster and more effective adder than a ripple-carry adder (RCA).

A two-stage procedure is used by the carry-select adder to perform addition. Two distinct carry

propagation chains—one for the high-order bits and one for the low-order bits—are established in the

first stage. Every chain is made to determine the carry-out at every bit point under the assumption that

the carry-in is 0.

Based on the value of the carry-in, a multiplexer is utilised in the second stage to choose the carry-out

from the appropriate chain. The carry-out is chosen from the low-order chain if the carry-in is 0. The

carry-out from the high-order chain is chosen if the carry-in is 1.

The two binary numbers' sum and a carry-out are the output. Any two equal-length binary numbers can

be added together using the carry-select adder.

The carry-select adder has the advantage over the ripple-carry adder in that it allows several bits to be

added in parallel, which decreases the delay time and speeds up addition. In contrast to the ripple-carry

adder, it is more difficult and expensive to implement.

A N-bit carry choose adder is designed to prevent the carry from spreading from bit to bit sequentially.

We might choose between the outputs of the two parallel adders using the real carry input created if we

had two adders operating in parallel, one with a carry input of 0 and the other with a carry input of 1.

This implies that all adders may be running calculations concurrently. Since it is rather inefficient to

employ two adders for each result bit, we may configure the N-bit adder to use two concurrent 2*N/M-

1 M-bit ripple carry adders. There is no need for parallel addition in this scenario because the adder for

17

the least significant bits will always have a carry input of 0.

Fig 5.2.1 internal diagram of carry select adder

18

CHAPTER 6

RESULTS

6.1 Simulation Results of 8 bit multiplier:

Fig 6.1.1 : Simulation waveform of 8-bit multiplication

Fig 6.1.2: RTL Diagram of 8-bit multiplication

19

Fig.6.1.3: Synthesized schematic of 8-bit multiplication

Fig.6.1.4: Power report and LUTs utilized for 8-bit multiplication

The proposed model is simulated and synthesized using Xilinx Vivado and implemented on Artix-7 FPGA

using The simulation results and RTL schematic of the proposed model is shown in figure 11 and figure 12

respectively . The designs are simulated and verified its functionality by providing different set of inputs

and the corresponding output is verified. For example the first inputs are ff x ff which are in hexadecimal

produced output as fe01 in hexadecimal which implies 255 x 255 = 65025.Register Transfer

20

Level (RTL) is an abstraction for defining the digital portions of a design.The figure 12represents the

RTL diagram of 8-bit multiplier designed using proposed method. From the figure 13 and figure 14 it

is portrayed that synthesized schematic and power report of the proposed model.

6.1.1 Comparison Environment:

In this section, various comparisons have included in Table1 and Table2. Table1 projects the blocks

required by the proposed 8-bit vedic multiplier

Table2: Manual Resource utilization of 8-bit proposed Multiplier

 Area Delay

Multiplier

 (LUTs) (ns)

 Proposed Multiplier 95 12.735

 Conventional 8-Bit Vedic Multiplier [23] 167 27.650

 8-Bit Vedic Multiplier Using Compressors [24] 153 13.480

 Table3:Comparison among various FPGA families

FPGA Family No. of Slices Delay(ns) Power(W)

 Artix-7 50 12.735 0.082

Automotive Artix-7 50 10.216 0.082

 Spartan-6 40 18.639 0.081

 Vertex-6 35 9.141 4.447

Vertex-6 lower power 33 9.404 1.412

Percentage improvement: From the results it is portrayed that implementation of multiplier using

Virtex-6 (lower power) provides optimized results in terms of area, delay and power compared to other

FPGA families. By using Vertex-6 (lower power) FPGA we can observe that there is 26.15%

improvement in delay and 34% reduction in area compared to Artix 7, 17.5% reduction in area and

49.54% improvement in delay compared to Spartan 6. As far as power concern, Spartan 6 and Artix 7

provide better performance compared to Virtex 6 family.

21

6.2 Simulation Results of 16-bit multiplier:

Fig.6.2.1: Simulation waveform of 16-bit multiplication

Fig.6.2.2: RTL Diagram of 16-bit multiplication

Fig6.2.3: Synthesized schematic of 8-bit multiplication

22

The designs are simulated and verified its functionality by providing different set of inputs and the

corresponding output is verified. For example the first inputs are ffff x ffff which are in hexadecimal

produced output as fe01 in hexadecimal which implies 65535 x 65535 = 4294836225. Register

Transfer Level (RTL) is an abstraction for defining the digital portions of a design. The figure 13

represents the RTL diagram of 16-bit multiplier designed using proposed method.

6.2.1 Comparison observation:

 Table4 : Comparison among various FPGA families

From the results it is portrayed that implementation of multiplier using Artix 7 provides optimized

results in terms of power compared to other FPGA families. By using Vertex-6 FPGA we can observe

that the number of occupied slices are less when compared to the other FPGA families.Virtex 7

provides optimized results in terms of gate delay,delay for logic and delay for route.

Multiplier Area Delay

 (no of occupied (ns)

 slices)

Reference Paper (25) 415 25.044

Reference Paper (26) - 36.71

Reference Paper (27) - 32

Reference Paper (28) 436 -

Proposed Design 221 24.90

From the above table, we observed that the area of the multiplier is reduced nearly 49 % when compared to

the reference paper (25 and 26).The delay of the proposed multiplier is reduced nearly 32% when

compared to the reference paper (26). So, it is observed that the proposed multiplier is efficient in

terms of delay and area when compared to other existing multipliers.

23

Table5 : Manual Resource utilization of 16-bit
proposed Multiplier

6.3 Simulation Results of 8 bit MAC:

Fig 6.3.1: Simulation waveform of 8-bit MAC

Fig 6.3.2: RTL diagram of 8-bit MAC

Fig 6.3.3: Synthesized schematic of 8-bit MAC

24

Fig 6.3.4: LUTs utilized for 8-bit MAC

Fig 6.3.5 : Power report for 8-bit MAC

25

The performance of an 8-bit MAC operation depends on the speed of the multiplier and adder circuits,

as well as the accuracy of the result. Different techniques can be used to optimize the performance and

accuracy of the MAC operation, such as using parallel multipliers and adders, implementing high-

speed algorithms for multiplication and accumulation, and using precision arithmetic techniques to

reduce rounding errors.

The result of an 8-bit MAC operation is a single 8-bit number that represents the accumulated product

of the two input numbers. The result can be represented in binary, decimal, or hexadecimal format,

depending on the requirements of the application.

In conclusion, an 8-bit MAC operation involves multiplying two 8-bit numbers and accumulating the

result with a previously accumulated value. The result is an 8-bit number that represents the

accumulated product of the two input numbers. The performance and accuracy of the operation depend

on the speed of the multiplier and adder circuits, as well as the techniques used to optimize the

calculation. The result can be represented in binary, decimal, or hexadecimal format, and may require

saturation and/or rounding-off depending on the application requirements. Overall, the 8-bit MAC

operation is a fundamental building block of digital signal processing and other numerical applications,

and is widely used in various embedded systems and microcontroller-based applications.

6.4 Simulation Results of 16-bit MAC:

Fig 6.4.1 : Simulation waveform of 16-bit MAC

Fig 6.4.2 : RTL diagram of 16-bit MAC

26

Fig 6.4.3: Synthesized schematic of 16-bit MAC

Fig 6.4.4 : LUTs utilized for 16-bit MAC

Fig 6.4.5 : Power report for 16-bit MAC
27

A 16-bit MAC (Multiply-Accumulate) operation involves multiplying two 16-bit numbers and

accumulating the result with a previously accumulated value. This operation is commonly used in

digital signal processing and other numerical applications that require higher precision than an 8-bit

MAC operation.

The performance of a 16-bit MAC operation depends on the speed of the multiplier and adder circuits,

as well as the accuracy of the result. Different techniques can be used to optimize the performance and

accuracy of the MAC operation, such as using parallel multipliers and adders, implementing high-

speed algorithms for multiplication and accumulation, and using precision arithmetic techniques to

reduce rounding errors.

The result of a 16-bit MAC operation is a single 16-bit number that represents the accumulated product

of the two input numbers. The result can be represented in binary, decimal, or hexadecimal format,

depending on the requirements of the application.

In summary, a 16-bit MAC operation is a more precise version of the 8-bit MAC operation, involving

the multiplication of two 16-bit numbers and accumulation of the result with a previously accumulated

value. The result is a 16-bit number that represents the accumulated product of the two input numbers.

The performance and accuracy of the operation depend on the speed of the multiplier and adder

circuits, as well as the techniques used to optimize the calculation. The result can be represented in

binary, decimal, or hexadecimal format and may require saturation and/or rounding-off depending on

the application requirements.

In conclusion, a 16-bit MAC (Multiply-Accumulate) operation is a fundamental building block of

digital signal processing and other numerical applications that require higher precision than an 8-bit

MAC operation. It involves multiplying two 16-bit numbers and accumulating the result with a

previously accumulated value. The operation can be performed using a binary multiplier circuit and an

adder circuit, and may require saturation and/or rounding-off to ensure the accuracy of the result. The

performance of the operation depends on the speed of the circuits and the techniques used to optimize

the calculation. The result can be represented in binary, decimal, or hexadecimal format, and is

commonly used in various embedded systems and microcontroller-based applications.

28

CHAPTER 7

INTRODUCTION TO VERILOG

7.1 DEFINITION:

A flip-flop, microprocessor, network switch, or other digital system can be described using Verilog, a

HARDWARE DESCRIPTION LANGUAGE (HDL). Verilog was developed to simplify the process

and increase the HDL's durability and adaptability. By enabling engineers to specify the functionality

of desired hardware and letting automation tools translate that behaviour into actual hardware pieces

like combinational gates and sequential logic, Verilog was developed to speed up the design process.

The semiconductor industry today uses and practises Verilog more than any other HDL. Verilog has

applications, much as every other hardware description language. It gives designers the option of

creating designs top-down or bottom-up.

Bottom-Up Design:

Electronic design is traditionally done from the bottom up. Each design is carried out utilising the

conventional gates at the gate level. With the help of this design, new structural, hierarchical design

approaches can be created.

Top-Down Design:

Numerous other advantages include early testing, simple switching between different technologies, and

structured system architecture.

7.2 HISTORY OF VERILOG:

The creation of a hardware description language and a logic simulator called Verilog-XL by a company

by the name of Gateway Design Automation in the 1980s might be credited as the beginning of Verilog

HDL. Cadence Design Systems bought Gateway in 1989, along with the licence for the language and

simulator. The language was placed in the public domain by Cadence in 1990 with the intention of it

becoming a widely used, non-proprietary language. Since Open Verilog International (OVI) and VHDL

International merged, Accellera, a nonprofit company, has taken over maintenance of the Verilog HDL.

The language had to go through the IEEE standardisation process, which was the responsibility of OVI.

Verilog HDL became IEEE Std. 1364-1995 in December 1995. IEEE Std. 1364-2001 is a significantly

improved version that was released in 2001.

A subsequent revision was made in 2005, however it only made a few small adjustments.

Additionally, Accellera has created a brand-new Verilog extension standard called System Verilog.

In 2005, System Verilog was added to the IEEE standard (1800-2005).

29

7.3 USES OF VERILOG:

Verilog's level of abstraction makes it difficult to understand the nuances of how it uses technology. To

produce a positive-edge triggered FF, for example, a D flip-flop design would need to understand how

the transistors should be arranged as well as the rise, fall, and CLK-Q times necessary to latch the value

onto the flop. Controlling power consumption, timing, and the ability to drive nets and other flops

would also require a deeper understanding of the physical characteristics of transistors. We can focus

on the behaviours with Verilog and take care of the rest later.

7.4 FEATURES OF VERILOG:
➢ Verilog takes case into account.

➢ Lowercase letters are used to specify keywords in Verilog.

➢ Verilog borrows most of its grammar from the "C" language.

➢ Verilog can be used to simulate a digital circuit at the algorithm, RTL, gate, and switch levels.

➢ Verilog lacks the concept of a package but nevertheless supports modern simulation tools like
TEXTIO, PLI, and UDPs.

7.5 DATA TYPES:

Several new data types are introduced by Verilog. RTL descriptions are simpler to write and

comprehend because to these data types. Verilog Hardware Description Language (HDL) data types are

used to represent the data storage and transport components found in digital hardware.Data types in

Verilog are separated into NETS and Registers. These data types represent various hardware

architectures and differ in how values are assigned to and stored in them.

There are four fundamental values in the Verilog HDL value

set: Table 6: the description of values

7.5.1 INTEGER AND REAL DATA TYPES:

For the most part, C programmers are familiar with data types. The idea is that algorithms developed

in C can be converted into Verilog if the two languages' data types are the same. Each bit in the brand-

new two-state data types that Verilog offers can only be either 0 or 1. RTL models may perform better

30

in simulators when two-state variables are used. Additionally, they have no influence on the

synthesis's results.

Table 7 : the description of types

✓ Two-state integer types:

Unlike in C, Verilog specifies the number of bits for the fixed-width

types Table 8 : the description of Two-state integer types

❖ Four-state integer types:

We preferred logic because it is better than reg. We can use logic where we have used reg or

wire. Table 9: the description of four-state integer types

7.5.2 NON-INTEGER DATA TYPES:

✓ Arrays:

In Verilog, variables, scalar and vector nets can all be defined. You can also define memory arrays, which

are one-dimensional arrays of a variable type.. Verilog lifted some of the limitations on memory

31

array utilization and permitted multi-dimensional arrays of both nets and variables. This is improved

in Verilog, which also allows for more array operations and refines the idea of arrays. Arrays in

Verilog can have both packed and unpacked dimensions.

✓ Packed dimensions:

• Are certain to be organised sequentially in memory.

• Any other packed object can receive a copy of it.

• It is slicable ("part-selects").

• Are limited to "bit" kinds such as bit, logic, int, etc.; some of these types, like int, have fixed sizes.

✓ Unpacked dimensions:

• It can be set up in memory however the simulator sees fit. An array can be dependably copied

onto another array of the same kind.

• There are restrictions for how an unpacked type is cast to a packed type when dealing with

arrays of various types.

• On entire unpacked arrays and slices of unpacked arrays, Verilog supports a number of operations.

• The arrays or slices in question for these must be of the same type and shape, i.e., have the

same quantity and length of unpacked dimensions.

• The packed dimensions can differ as long as the array or slice elements have the same number

of bits.

The permitted operations are:

Reading and writing array elements, slices, and the entire array, as well as equality relations on the

array's elements, slices, and elements.

Associative arrays and dynamic arrays, both of which have variable element counts during simulation,

are also supported in Verilog. To accommodate all of these array kinds, Verilog provides a wide

variety of arrays of querying procedures and methods.

7.6 NETS:

Nets don't hold any data because they are used to connect hardware components like logic gates. The

physical link between structural elements, such as logic gates, is represented by the net variables.

Except for trireg, these variables don't save any values. The value of these variables' drivers is

continuously altered by the driving circuit. Wire, tri, wor, trior, wand, triand, tri0, tri1, supply0,

supply1, and trireg are a few examples of net data types.

32

A net data type must be used when a signal is:

It is driven by some gadgets' output.

It is designated as either an input or an out-of port.

within a continuous assignment, on the left.

1. Wire:

A wire in a circuit acts as a fake wire when linking gates or modules. The value of a wire can be read

but not assigned within a function or block. Because a wire cannot keep its value, it can only be driven

by a continuous assignment statement or by connecting it to a gate or module's output.

2. Wand (wired-AND)

A wand's value is determined by the logical AND of all the drivers attached to it.

3. Wor (wired-OR)

The logical OR of all the drivers connected to wor determines its value.

4. Tri (three-state)

Except for the driver that decides the value of the tri, all drivers attached to it must be z.

5. Supply0 and Supply1

Supplies 0 and 1 specify the wires connected to logics 0 (ground) and 1 (power).

7.7 REGISTERS:

An instance of a data object is a register, which preserves a value for upcoming procedural

assignments. They are only used by functions and procedural blocks. An assignment statement in a

procedure acts as a trigger to change the value of the data storage element.

Reg is not by definition a physical register in Verilog; instead, it is a variable type. Data is stored in multi-

bit registers as unsigned numbers, and no sign extension is applied to numbers that the user could have

assumed to be two's complement. Register data types include reg, integer, time, and real. The type that is

most frequently used is reg. Reg is the term used to describe logic. A general-purpose variable is an integer.

In particular, loops--including indices, arguments, and constants--use them. Unlike officially specified reg

types, which store data as unsigned numbers, they store data as signed numbers. Their size will

automatically default to 32 bits if they store numbers that are not declared at compile time. The synthesiser

adjusts them to the minimum width required at compilation if they hold constants in system modules real.

Use Time and Realtime to store simulation times in test benches. The $time system task and time, a 64-bit

quantity, can be used to store simulation time.A reg can also express combinational logic, therefore it need

not always represent a flip-flop. At the beginning of the simulation, the reg variables are set to x. The value

x is present in any wire variable that isn't attached to anything. During the declaration, the size of a register

or wire may be defined. Registers and wires are designated as vectors

33

when their size is greater than one bit.

7.8 VERILOG STRING:

Reg is used to store strings, and the reg variable's width needs to be sufficient to hold the string. A

string has one byte and one ASCII value for each character. Verilog truncates the string's leftmost bits

if the variable's size is less than the string's. Verilog inserts zeros to the left of the string if the variable's

size is greater than the string's size.

7.9 LEXICAL TOKENS:

Verilog's lexical rules are comparable to those of the C programming language. The source text files

for the Verilog language are a stream of lexical tokens. One or more characters may make up a lexical

token, and each character appears in a single token.

The tokens may be strings, keywords, comments, numbers, or white space. A semicolon (;) should be

used to end each line. A case-sensitive language is Verilog HDL. Furthermore, all terms are lowercase.

White Space

Tab, blank, newline, and form feed characters can all be found in white space. Except when they

are used to divide other tokens, these characters are ignored. Tabs and blank spaces, however,

matter in strings.

Comments

The remarks can be divided into two categories, including:

Comments on a single line start with the symbol // and end with a carriage return.

For instance, the single-line syntax is //this.

The tokens /* and */ mark the beginning and end of multi-line comments, respectively.

/* this is multiline syntax/, for instance.

Identifiers

The name given to an object, such as a module, register, or function, is its identifier. Identifiers must

start with an alphabetical character or an underscore.A_Z and a_z, for instance.Identifiers are made up

of an alphabetical combination, a number value, an underscore, and the symbol $. They have a

maximum character count of 1024.Identifiers must start with an alphabetic character (a-z A-Z_) or an

underscore. Identifiers may also include underscores, dollar signs, and alphabetic and numeric

characters (a-z A-Z 0-9 _ $).Identifiers can have a maximum of 1024 characters.

Escaped Identifiers

By escaping the identification, Verilog HDL enables the use of any character in an identifier. Any readable

ASCII character can be used in an identifier, which is what is meant by "escaped identifiers." the

hexadecimal digits 21 through 7E, or the decimal values 33 through 126. Identifiers that have been escape

start with a backslash (/). The backslash causes the whole identifier to escape. Commas, brackets

34

and semicolons constitute a part of the escaped identifier unless they are preceded by white space,

which ends the escaped identifier. Put a space after any escaped identifiers. If not, characters that ought

to come after the identifier are seen as being a part of it.

7.10 OPERATORS

Unique characters called operators are used to specify conditions or control variables. One, two,

and occasionally three characters are used to control variables.

1. Arithmetic Operators

These operators carry out calculations. Both the + and - can be employed as binary (z-y) or unary (x)

operators. Addition, subtraction, multiplication, division, and modulus are all arithmetic operators.

2. Relational Operators

It returns the result in single bit either 1 or 0. These are the operations :

Table 10 : Relational Operators

3. Bit-wise Operators

It compares both operands bit by bit. These are the operations:

Table 11 : Bit-wise Operators

4. Logical Operators

Logical operators, which are bit-wise operators, only use single-bit operands. One of the two-bit values,

0, or 1, is returned. All non-zero values can be treated as 1, and they can work with integers, bits, or

expressions. Logical operators are usually used in conditional statements since they work with

expressions. The following operators are a part of logical operation:

35

Table 12 : logical Operators

5.Reduction Operators

Reduction operators work on all the bits in an operand vector and are the unary version of bitwise

operators. These also give off a value of one bit. The following operators are a part of the reduction

operation:

Table 13 : Reduction Operators

6. Shift Operators

Shift operators shift the first operand by the number of bits indicated by the second argument in

the syntax. Zeros are substituted for empty positions in both left and right shifts (sign extension is

not used). The following operators work during shifts:

Table 14 : Shift Operators

7. Concatenation Operator

In order to create a larger vector, the concatenation operator joins two or more operands together.

The following operator is a part of the concatenation operation: {}

8. Replication Operator

The replication operator duplicates an item in many ways. The Replication operation's operator is:

{n{item}} (n fold replication of an item)

9. Conditional Operator

A multiplexer is created using the conditional operator. It is of the same type as that used in C/C++ and

evaluates one of the two expressions based on the condition. Conditional operations employ the

following operator: (Condition)?:

36

7.11 OPERANDS

Expressions or values that an operator manipulates or performs operations on are referred to as operands.

Every expression requires at least one operand.

1. Literals

In Verilog expressions, literals are operands with constant values. The following are the top two

Verilog literals:

String: A literal string operand is a one-dimensional array of letters enclosed in double quotation marks

("").

Numeric: The operand's constant number is given as a binary, octal, decimal, or hexadecimal number.

2. Wires, Regs, and Parameters

Data types such as wires, regs, and parameters are utilised as operands in Verilog expressions.. "x [2]"

for both the bit- and part-selection and "x [4:2]"

Square brackets ("[]") are used to choose one bit or several bits from a wire, a set of rules, or a

parameter vector, respectively.

3. Function Calls

Function calls employ the return value of a function directly, as opposed to assigning it to a register or

wire beforehand. Simply listed as one of the types of operands is the function call. It is useful to know

the bit width of the return value from the function call.

7.12 VERILOG MODULE:

A piece of code that implements a certain feature is known as a Verilog module. Modules can be

embedded within other modules, and a higher-level module's input and output ports can be used to

communicate with its lower-level modules.

Syntax

A piece of code that implements a certain feature is known as a Verilog module. Using its input and

output ports, a higher-level module can communicate with its lower-level modules, and modules can be

nested inside of other modules.

Purpose of a Module

During synthesis, a module is a design element that carries out a specific set of behavioral

characteristics before being converted into a digital circuit. Any number of inputs may be provided to

the module, and it will output data in response.It makes it possible to reuse a module to build bigger,

more significant modules that utilise more advanced hardware.

Hardware Schematic

The technique can be reversed as opposed to using smaller design blocks as a foundation for larger

ones. Consider dividing a simple GPU engine into smaller components.

37

CHAPTER 8

HARDWARE IMPLEMENTATION

38

Fig.8 Hardware implementation of the proposed multiplier

BASYS 3 ARTIX-7 FPGA BOARD

An entry-level FPGA development board with the Xillinx Artix 7 FPGA architecture, the Basys 3 was

created specifically for the vivado design suite.

The Basys 3 has the same functionalities that are present on all Basys boards. All necessary FPGA

support circuits, fully functional hardware that is ready to use, a sizable collection of hardware, a

sizable collection of on-board input-output devices, and a free version of development tools. The use of

Basys 3 board in this project and the salient features are

• Inputs are given to the switches and each binary digit used as a one switch.

• Total 8x8 switches are used. Multiplier is used for remaining 8 switches.

• Output are represented by the LEDs.

• In this project USB connection is used.
39

• Switch acts as Input and Output indicated by LEDs.

• For the proper use of vivado, follow the

steps: (i)Achieve the bitstream successfully.

(ii)Connecting the hardware manager.

1) 00001101 x 11010010 => 0000101010101010 In Binary Form

13 x 20 => 2730 In decimal Form

2) 01010111 x 01101011=> 0010010001011101 In Binary Form

87 x 107 => 9309 In Decimal Form

3) 00001111 x 00001111 => 0000000011100001 In Binary Form

15 x 15 => 225 In decimal Form

4) 00000001 x 00000011 => 0000000000000011 In Binary Form

1 x 3 => 3 In Decimal Form

5) 11111111 x 11111111 => 1111111000000001 In Binary Form

255 x 255 =>65025 In Decimal Form

40

CONCLUSION

In this project , a 8-bit MAC and 16-bit MAC are designed with successful implementation 8-bit and 16-bit

proposed multiplier. The proposed multiplier was synthesized in different FPGA families using the Xilinx

tool and the response of each FPGA platform was observed. In the proposed 16-bit multiplier, it is

concluded that multiplier implementation using Artix 7 offers optimized results in terms of power when

compared to other FPGA families. When compared to other FPGA families, the number of occupied

segments is lower when using Vertex-6 FPGA. Virtex 7 produces optimized outcomes in terms of gate

delay, logic delay, and route delay. According to the findings, implementing a 8-bit multiplier using Virtex-

6 (lower power) offers optimised results in terms of area, delay, and power when compared to other FPGA

families. We can see that using Vertex-6 (lower power) FPGA results in increase in delay and a reduction in

area when compared to Artix 7, and Spartan 6. Spartan 6 and Artix 7 outperform the Virtex 6 family in

terms of battery consumption.The compressors in this proposed multiplier are used in such a way that the

size of the compressor is determined by the entire sum of both input bits and carry bits propagated to that

level. By deciding on the compressor in this manner, the area of the suggested multiplier unit is reduced.To

obtain the results of 16 bit multiplication, different compressors such as 4:2, 5:2, 7:2, and other higher order

compressors are used at various positions in the proposed multiplier.

41

References

[1] Y. Kim, Y. Zhang, and P. Li, "An energy efficient approximate adder with carry skip for error

resilient neuromorphic VLSI systems," in proc. of International Conference on Computer-Aided

Design (ICCAD), USA, 2013, pp. 130-137.

[2] D. Baran, M. Aktan, and V.G. Oklobdzija, "Energy Efficient Implementation of Parallel CMOS

Multipliers with Improved Compressors,", in proc. ACM/IEEE International Symposium on Low-

Power Electronics and Design (ISLPED), USA, 2010, pp. 147-152.

[3] S. Veeramachaneni, K. Krishna M, L. Avinash, S. R. Puppala, and M.B. Srinivas, "Novel

Architectures for High-Speed and Low-Power 3-2, 4-2, and 5-2 Compressors”, in proc. of

International Conference on VLSI Design (VLSID), Bangalore, 2007, pp.324-329.

[4] R. Menon, and D. Radhakrishnan, ”High performance 5: 2 compressor architectures,” in proc. of IEE

- Circuits, Devices and Systems, vol. 153,no. 5, pp. 447-452, Nov 2006.

[5] A. Pishvaie, G. Jaberipur, and A. Jahanian,”High Performance CMOS (4:2) compressors,” Int.

journal of electronics, vol. 101, no. 11,1511-1525, Jan. 2014.

[6] O. Kwan, K. Nawka, and E. SwartzlanderJr,” A 16 bit by 16 bit MAC Design Using Fast 5:3

Compressor Cells”, J. of VLSI Signal Processing, vol. 31, no. 2, 77-89,July 2002.

[7] S. Mehrabi, R.F Mirzaee, S. Zamanzadeh, K. Navi, and O. Hashemipour,”Design, analysis, and

implementation of partial product reduction phase by using wide m:3 (4 m 10) compressors”, Int.

Journal of High Performance System Arch, vol. 4, no. 4,231-241,Jan. 2013.

[8] A. Dandapat, P.Bose, S. Ghosh, P Sarkar, and D. Mukhopadhyay,(March 2009), ”A 1.2-ns 16 x 16

bit binary multiplier using high speed compressors,” World Academy of Science, Engineering and

Technology, vol. 39, 627-632,March 2009.

[9] R. Marimuthu, M. Pradeep kumar, D. Bansal, S. Balamurugan, and P.S Mallick,”Design of high

speed and low power 15-4 compressor,” in proc. International Conference on Communication and

Signal Processing (ICCSP),Melmaruvathur, 2013, pp. 533-536.

[10] J. Liang, J. Han,and F. Lombardi, New metrics for the reliability of approximate and probabilistic

adders,” IEEE Trans. on Computers, vol. 63, no. 9,1760 – 1771,Sep.2013.

[11] K. Bhardwaj, P.S. Mane, and J. Henkel,”Power- and area-efficient Approximate Wallace Tree

Multiplier for error resilient systems,” in proc. of 15th International Symposium on Quality

Electronic Design (ISQED),USA, 2014, pp. 263 – 269.

42

	453cb41bde59e4269e65011d2b9ca403bb425c2c8fde0d2554daca86bc56a052.pdf
	8f8eb92237e2d77c78a94b4b6085c2feacde25e99b4240893573ca3439491a71.pdf
	453cb41bde59e4269e65011d2b9ca403bb425c2c8fde0d2554daca86bc56a052.pdf

