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ABSTRACT 

 

A significant problem in many fields is how to navigate, track, and position 

an object. Global Positioning System (GPS) is the best resolution to this problem. 

Since GPS is a form of wireless communication in space, the ephemeris data that have 

been received are erroneous. Therefore, the main challenge is to separate the unique 

ephemeris data from this inaccurate information. For this problem as well as the 

nonlinear system processing, adaptive algorithms deliver better results. Better 

outcomes are also produced by metaheuristic algorithms, but the processing time is 

much longer.      

 

In this project, Covariance Matrix Adaptation Evolution Strategy      

(CMA-ES) a stochastic process and derivative free algorithm for better numerical 

optimization of nonlinear problems. It works on two main principles for the 

parameters adaptation of the search distribution. The data input device is a dual-

frequency GPS receiver situated at the IISc Bangalore. To ensure accuracy, the 

estimated GPS receiver position is compared to the original position coordinates. 

 

Keywords: Adaptation, Covariance, Evolution, Optimization 
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Chapter 1  

Global Positioning System (GPS) 

 

1. 1 INTRODUCTION TO GPS 

       The Global Positioning System (GPS), originally NAVSTAR GPS, is a 

government-owned, space-based radio navigation system that the United States Air 

Force manages. A GPS receiver can receive geolocation and time data from the global 

navigation satellite system from any point on or near the Earth where there is an 

unhindered line of sight to four or more GPS satellites. The GPS Project was launched 

by the US Department of Defense in 1973 for use   by the United States military and 

became fully operational in 1995. In the 1980s, civilian use was permitted. 

One of the earliest functioning satellite positioning systems was GPS, and its 

advancements have fueled the development and widespread use of positioning 

technologies ever since. GPS will continue to be a vital part of daily life as GPS-based 

autonomous applications proliferate. A network of satellites called the Global 

Positioning System (GPS) enables extremely precise Timing, Navigation, and 

Positioning (TNP) measurements across the world. GPS being the first satellite 

positioning systems, it  played a crucial role in a variety of fields, such as defence, 

autonomous cars, farming, and aerial or marine surveying. 

A GPS device does not transmit data to satellites. To further improve position 

accuracy, GPS-enabled devices, such as smartphones, can additionally make use of 

telephonic networks and towers as well as internet connections. GPS device may 

provide data to these systems using these latter two systems. Because the US 

government owns the GPS satellite system and can selectively reject or limit network 

access, GPS satellite networks are developed by other countries on their own. They 

are: 

1. China's Bei Dou Navigation Satellite System 

2. Russia's Global Navigation Satellite System (GLONASS) 

3. The European Union's Galileo positioning system 

4. India's Indian Regional Navigation Satellite System (IRNSS),  NAVIC. 
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1.2 HOW GPS WORKS 

 The space segment, control 

segment, and user segment are the 

three main sections that make up 

the GPS constellation, like many 

other GNSS constellations. US 

Space Force manages and operate 

over 30 satellites which makes the 

GPS space segment. These 

satellites transmit radio signals to 

control and monitoring stations on 

Earth, as well as directly to 

handlers who require highly precise satellite positioning. 

The GPS control segment is managed by the US Space Force too. It has 

dedicated master control, ground antennas and backup control stations, and numerous 

monitor stations dotted around the world. These stations keep an eye on the GPS 

satellites to make sure they are functioning properly, are circling in the right places, 

and have precise atomic clocks. The general health and accuracy of the GPS 

constellation depend on these stations. 

The user group includes anyone who utilises GPS satellites to determine PNT. 

Numerous applications employ GPS for very accurate location across the world, from 

mobile phones that provide instructions to autonomous vehicles that require lane-

level positioning perfection; from farmers who track crops and harvesting routes year 

after year to a UAV that maps a rainforest. 

 

1.3 MAJOR SEGMENTS OF GPS 

There are three main segments in GPS.: 

1. Space segment 

2. Control segment 

3. User segment 

 

Figure 1:1 How GPS Works 
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1.3.1 SPACE SEGMENT 

24 satellites make up the space segment, which orbits the Earth at a distance 

of 12,000 miles. The signals can reach a wider area because of their high height. A 

GPS receiver on Earth is capable of receiving a signal from no less than four satellites 

at any given point in time because of the way the orbits of the satellites are 

constructed. The GPS receiver can distinguish between the signals because each 

satellite sends out low radio signals with a distinctive code on various frequencies. 

The ability to calculate the range between the satellite and the device that receives 

GPS is the main purpose of these coded messages. By dividing the trip period by the 

rate of light, the distance between the satellite and the GPS receiver is determined. 

Since they are faint signals that won't flow through solid objects, an unobstructed 

view of the sky is essential. 

 

1.3.2 CONTROL SEGMENT 

The satellites are tracked by the control segment, which then sends them 

updated orbital and time data. Four self-regulating stations and one master control 

station make up the control section. The master control station corrects the data before 

it is sent back to the GPS satellites. The four unmanned stations receive the 

information from the satellites and deliver it to it. 

 

1.3.3 USER SEGMENT 
The user segment is made up of users and their GPS receivers. The number 

of concurrent users is infinite. 

 

1.4 GPS SATELLITE SIGNALS 

Satellites constantly broadcast their orbital position and accurate time on radio 

frequencies at that location. This signal, together with at least three other satellite 

signals, is received by antennas and analysed in a GPS receiver to determine a user's 

location. 
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GPS broadcasts on L1 (1575.42 MHz), L2 (1227.60 MHz) and L5 (1176.45 

MHz) civilian frequencies; GPS also broadcasts on L3 (1381.05 MHz) and L4 

(1379.913 MHz) for governmental and regional satellite-based augmentation systems 

(SBAS). M-code, a military code transmitted on frequencies L1 and L2 designated 

for use by the United States military, is also broadcast by numerous satellites. 

 

1.5 GPS ACCURACY 

The processor in a positioning system determines its performance. A very 

accurate GPS receiver, for example, than a cell phone, it will be much more accurate. 

To improve accuracy, potential sources of error are identified and modelled at 

monitoring and control stations. 

The majority of faults are caused by clock problems, orbital drift, atmospheric 

and multipath delays, and radio frequency interference. By contributing to geometric 

dilution of precision, positioning, navigation, and timing accuracy are constantly 

threatened by these sources. 

Some technologies, such as satellite-based augmentation systems (SBAS), 

correction services for GPS, and the integration of extra sensors like radar or inertial 

navigation systems, help reduce the loss of precision and these errors. By calculating 

a position through pseudo range or carrier wave calculations, accurate GPS receivers 

assist in reducing errors through various algorithms. 

 

1.6 APPLICATIONS OF GPS 

GPS supports applications that rely on satellite technology for accurate timing, 

navigation, and positioning measurements all over the world. Despite the fact that 

these uses for GPS vary by industry, they are all rooted on the need for precise 

positioning, safe and reliable navigation, tracking and monitoring an object's 

movement, surveying and mapping an area, or timing to the nearest billionth of a 

second. 

Applications like mining, for instance, to survey a location before beginning 

work. Companies monitor potential mineral deposits, identify which areas to avoid 

reducing their environmental impact, and enable autonomous machinery to transport 



6 

 

minerals across the site. 

GPS is used in conjunction with other constellations in applications that 

require high precision positioning. The US military, on the other hand, relies on GPS 

in an unusual way due to its encrypted M-code signal. M-code allows the military to 

maintain continuous access to positioning while also increasing resilience to potential 

jamming and interference sources. 

 

1.7 TRILATERATION 

A GPS gadget uses the mathematical method of trilateration to ascertain the 

user's position, speed, and elevation. A GPS device can calculate the precise range 

and the separation between each satellite being tracked constantly receiving and 

analysing radio transmissions of multiple using GPS satellites with triangle, circle, 

and sphere geometry. 

1.7.1 HOW TRILATERATION WORKS 

 An improved form of triangulation known as trilateration does not include 

measurements of angles in its calculations. A point's approximate location on the 

surface of the Earth within a sizable circular area can be determined using data from 

a single satellite. The GPS can pinpoint the 

exact position of that point to an area where the 

two satellite data areas overlap by including 

data from a second satellite. The addition of 

data from a third satellite provides an accurate 

position on the Earth's surface. 

All devices need 3 satellites to calculate 

position accurately. The location of the point is 

more precisely determined due to information 

from a fourth or even more satellites, which also 

makes it possible to calculate variables like 

altitude or, in the case of airplanes, height. GPS receivers routinely track four to seven 

satellites at the same time and analyse the data using trilateration. 

 

Figure 1:2 Pictorial Representation of 
Trilateration 
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GPS receiver uses speed equation to calculate the distance to satellites, 

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸 =  𝑆𝑃𝐸𝐸𝐷 ×  𝐷𝑈𝑅𝐴𝑇𝐼𝑂𝑁 (𝑇𝑖𝑚𝑒)         (1) 

You've probably seen advertisements for a new GPS satellite for your car that 

show a airplane or spaceship coming in for a landing or a helicopter flying in the air. 

Aren't these awesome? You've undoubtedly aware of GPS receivers, which measure 

the Earth's location and determine their distance from one another. But how exactly 

does it work? 

They employ a procedure known as Trilateration. Distances are measured during 

trilateration. Let's dig a little deeper into this. 

 

1.7.2 TRILATERATION MEASURES DISTANCE, NOT ANGLES 

   Trilateration is a technique used to determine the position of a point in 

space by measuring its distance from three known points. This is accomplished by 

measuring the time it takes for a signal to travel from the point being located to 

each of the known points and using this information to calculate the distance 

between the points. 

 

   It is important to note that trilateration measures distances, not angles. This 

contrasts with triangulation, which uses the measurement of angles to determine 

the location of a point. 

 

   Trilateration is commonly used in various applications, such as in GPS 

(Global Positioning System) technology to determine the location of a receiver on 

Earth's surface, or in surveying to measure distances between points on a terrain.  
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Figure 1:3 Data Collection 

1.8.1 GPS SATELLITE 

GPS satellite blocks are different generations of the Global Positioning 

System that are used for satellite navigation. GPS satellites orbit the Earth in Medium 

Earth Orbit (MEO) at an altitude of about 20,200 km (12,550miles). Each satellite 

makes two daily orbits around the Earth. 

The GPS satellites are organised into six evenly spaced orbital planes that 

circle the Earth. Baseline satellites occupy four "slots" on each plane. This 24-slot 

configuration ensures that users can see at least four satellites from virtually any 

location on the planet. 

 

When the baseline satellites are serviced or decommissioned, the Space Force 

typically flies more than 24 GPS satellites to maintain coverage. The additional 

satellites may improve GPS performance, but they are not part of the core 

constellation. 

 

1.8.2 CHOKE RING ANTENNA 

A choke ring antenna is a type of circularly polarized antenna that is used for 

GPS (Global Positioning System) applications. The antenna is designed to mitigate 
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the effects of multipath interference, which can occur when GPS signals bounce off 

surfaces such as buildings, trees, or the ground before reaching the antenna. 

 

The choke points act as a filter, preventing unwanted signals from entering the 

antenna, and reducing the effects of multipath interference. The circular shape of the 

antenna also helps to maintain a consistent signal quality in all directions, making it 

well-suited for GPS applications. 

 

Choke ring antennas are commonly used in a variety of GPS applications, such 

as geodetic surveying, precision agriculture, and mapping. They are also used in 

aviation and maritime navigation, where accurate GPS signals are critical for safe and 

efficient operations. 

 

1.8.3 GPS RECEIVER 

A GPS (Global Positioning System) receiver is an electronic device that 

receives and processes signals from GPS satellites to determine the receiver's 

location, speed, and other related information. 

 

The receiver uses a GPS antenna to receive the signals broadcast by GPS 

satellites. The receiver then uses specialized algorithms and processing techniques to 

calculate the receiver's location based on the time it takes for the signals from multiple 

GPS satellites to reach the receiver. 

 

In addition to determining the receiver's location, GPS receivers can also 

provide information such as speed, heading, altitude, and distance traveled. They may 

also include additional features such as maps, route planning, and point-of-interest 

information. 
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1.8.4 NovAtel Converter 

NovAtel Converter can be used in conjunction with NovAtel's Global 

Navigation Satellite System (GNSS) receivers and other software tools to collect 

high-precision GNSS data. 

Here are the general steps involved in using NovAtel Converter for data collection in 

GPS: 

→ Set up the GNSS receiver: This involves configuring the receiver settings, 

such as the type of GNSS signals to receive, the data rate, and the antenna type 

and location. This can be done using NovAtel's receiver software or a third-

party software tool. 

Connect the receiver to the computer: This can be done using a USB or serial 

cable, depending on the type of receiver and the computer. 

→ Start NovAtel Converter: The software tool should be started on the computer, 

and the appropriate input and output data formats should be selected. The input 

format should be set to NovAtel's binary format (OEM6/OEM7), and the 

output format should be set to the desired format for data collection, such as 

NMEA or RTCM. 

→ Collect the data: Once NovAtel Converter is running and the GNSS receiver 

is connected, the software will begin collecting data in the desired format. The 

data can be saved to a file or streamed to a third-party software tool for further 

processing and analysis. 

NovAtel Converter can also be used to process and filter the data in real-time, 

which can enhance the accuracy and dependability of GNSS data. This can be 

particularly important in applications requiring precise positioning, such as surveying 

and mapping. 

In summary, NovAtel Converter is a software tool that can be used in 

conjunction with NovAtel's GNSS receivers and other software tools to collect high-

precision GNSS data in a variety of formats. It provides a flexible and reliable solution 

for data collection and processing in GPS applications. 
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1.8.5 OBSERVATION DATA  

Observation data from satellites typically consists of a range of measurements 

and signals that are transmitted from the satellite to ground-based receivers. The 

specific types of data and signals that are transmitted can vary depending on the type 

of satellite and the purpose of the mission. 

 

1.8.6 NAVIGATION DATA  

Navigation data from satellites consists of information that is transmitted from 

the satellite to ground-based receivers, and that is used for precise positioning, 

navigation, and timing. The specific types of navigation data that are transmitted can 

vary depending on the type of satellite and the purpose of the mission. 

1.8.7 INTERPOLATOR 

An interpolator is a tool used to estimate a value between two known values. 

In the context ofGPS data collection, an interpolator can be used to estimate the 

location of a GPS receiver at a time for which no direct measurement was made.One 

common type of interpolator used in GPS data collection is a linear interpolator. A 

linearinterpolator assumes that the location of the GPS receiver changes at a constant 

rate betweentwo known measurements. The linear interpolator then estimates the 

location of the receiverat a given time based on this assumption.Other types of 

interpolators that can be used in GPS data collection include splineinterpolators and 

kriging interpolators. These interpolators use more complex algorithms toestimate the 

location of the GPS receiver at a given time. 

 

1.9 WHAT IS PSEUDORANGE 

The distance between a satellite and a GNSS receiver is approximated by the 

pseudo range. When positional data is transmitted, a GNSS receiver will attempt to 

measure the ranges of (at least) four satellites as well as their positions.  

The basic observed pseudorange equation is given by 

𝑃𝑟𝑛𝑔 = 𝜌𝑔𝑒𝑜 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡𝑠) + 𝐼𝑑𝑒𝑙 + 𝑇𝑑𝑒𝑙 + 휀𝑚𝑢𝑙         (2) 

 Simplified pseudorange equation is given by, 
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𝑃𝑟𝑛𝑔 = √(𝑥𝑠 − 𝑥𝑢)2 + (𝑦𝑠 − 𝑦𝑢)2 + (𝑧𝑠 − 𝑧𝑢)2 + 𝐶𝑙𝑘𝑟           (3) 

 

Where,  𝐶𝑙𝑘𝑟 = 𝑐 ⋅ (𝑑𝑡𝑟) 

The observed pseudorange equations from i number of GPS satellites are given by, 

𝑃𝑟𝑛𝑔
1 = √(𝑥1

𝑠 − 𝑥𝑢)2 + (𝑦1
𝑠
− 𝑦𝑢)

2
+ (𝑧1

𝑠 − 𝑧𝑢)2 + 𝐶𝑙𝑘𝑟 

𝑃𝑟𝑛𝑔
2 = √(𝑥2

𝑠 − 𝑥𝑢)2 + (𝑦2
𝑠
− 𝑦𝑢)

2
+ (𝑧2

𝑠 − 𝑧𝑢)2 + 𝐶𝑙𝑘𝑟 

𝑃𝑟𝑛𝑔
3 = √(𝑥3

𝑠 − 𝑥𝑢)2 + (𝑦3
𝑠
− 𝑦𝑢)

2
+ (𝑧3

𝑠 − 𝑧𝑢)2 + 𝐶𝑙𝑘𝑟 

                      ⋮                    ⋮                      ⋮                      ⋮                ⋮ 

           𝑃𝑟𝑛𝑔
𝑖 = √(𝑥𝑖

𝑠 − 𝑥𝑢)2 + (𝑦𝑖
𝑠
− 𝑦𝑢)

2
+ (𝑧𝑖

𝑠 − 𝑧𝑢)2 + 𝐶𝑙𝑘𝑟              (4) 

 

Pseudorange is used because the calculated distance is not a true, precise range 

between the two points, but rather an estimate that is subject to errors and variations 

caused by a variety of factors, including atmospheric conditions, satellite orbit errors, 

and clock errors in the receiver and the satellite. 

 

To calculate pseudorange, the GPS receiver measures the time delay between 

the transmission of a GPS signal by a satellite and its reception by the receiver. The 

time delay is then multiplied by the speed of light to obtain an estimate of the distance 

between the satellite and the receiver. This estimated distance is called the 

pseudorange. 

 

Pseudorange is expressed in units of time (nanoseconds or microseconds) or 

distance (meters or feet), depending on the convention used by the receiver.  

 

To account for variations in the GPS signal caused by the ionosphere and 

troposphere, the pseudorange is typically corrected using a process called differential 

GPS. This involves comparing the pseudorange of a GPS receiver to the pseudorange 

of a reference station with a known location, and applying a correction factor to the 
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receiver's pseudorange based on the difference between the two. 

 

In addition to pseudorange, GPS receivers also measure other parameters 

related to the GPS signal, such as carrier phase and signal strength. These 

measurements can be used to further refine the accuracy of the GPS position 

calculation and precise point positioning. 
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Chapter 2  

Adaptive Optimization Techniques 

 

2.1 LEAST SQUARES ALGORITHM 

2.1.1 INTRODUCTION 

Carl Fredrich Gauss invented the method of least squares and the normal 

distribution in 1795, when he was 18 years old, to investigate celestial body positions 

that are prone to unpredictable measurement errors. 

     

The Least squares method is implemented in the calculation of the receiver 

coordinates obtained from the pseudo ranges for every epoch. By means of pseudo-

range data, we have position with less precision and more distortion. Every satellite 

sends a signal at a specific time 𝑡𝑠𝑣, which the receiver receives later 𝑡𝑢. If the user 

clock is perfectly in sync with the satellite clock, the distance travelled is 𝑐(𝑡𝑢 −  𝑡𝑠𝑣). 

Hence range measured is 𝜌 = 𝑐(𝑡𝑢 −  𝑡𝑠𝑣). From practical view, obtaining the correct 

time from the user or satellite is difficult. The actual satellite clock time 𝑡′𝑠𝑣 and actual 

user clock will be 𝑡′𝑢. 

Then range measured will be 

 

                                   𝑡′
𝑠𝑣 = 𝑡𝑠𝑣 + 𝑑𝑡                             (5) 

                                                        𝑡′𝑢 = 𝑡𝑢 + 𝑑𝑇                              (6) 

Where 𝑑𝑡 and 𝑑𝑇 are offsets of satellite and receiver clocks respectively. 

 

In this part, we'll examine how to infer a constant's value from a number of 

erratic measurements of it. Consider the case where we are dealing with a resistor but 

are unsure about its resistance. We use a multimeter to measure its resistance several 

times, but because we are using a cheap multimeter, the measurements are noisy. We 

aim to calculate the resistance based on our noisy measurements. We would like to 

calculate a constant scalar in this situation, but we could also estimate a constant 
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vector. To put it mathematically, consider x to be n-element vector that is constant 

but unknown, and y as a noisy measurement vector with k elements. How do we 

determine the "best" estimate h of x? Assume that each measurement vector y element 

is created by linearly combining the x elements with some measurement noise: 

𝑦1 = 𝐻11𝑥1 + … + 𝐻1𝑛𝑥𝑛 + 𝑣1 

         :                         :           : 

                                                   :                          :           : 

       𝑦𝑘 = 𝐻𝑘1𝑥1 + … + 𝐻𝑘𝑛𝑥𝑛 + 𝑣𝑘                              (7) 

This group of equations may be transformed into a matrix as  

                                                 𝑦 = 𝐻𝑥 + 𝑣                                            (8) 

Now define ∈𝑦 as the difference between the noisy measurements and the vector 

𝐻�̂�:  

                                                  ∈𝑦 = 𝑦 −  𝐻�̂�                                       (9) 

∈𝑦, is called the measurement residual. According to Karl Gauss [Gau04], the 

most probable value of the vector x is the vector �̂� that minimizes the sum of squares 

between the observed values y and the vector 𝐻�̂�. As a result, let us compute the ℎ 

that reduces the cost function 𝐽, 𝐽 is given as 

 

              𝐽 =  𝜖𝑦1
2 + ⋯+ 𝜖𝑦𝑘

2  

                                                      = 𝜖𝑦
𝑇 ∈𝑦                                               (10) 

J is frequently referred to as a cost function, objective function, or return 

function in control and estimation books and papers. We can substitute for ∈𝑦 in the 

above equation to rewrite J as 

 

𝐽 =  (𝑦 −  𝐻�̂�)𝑇(𝑦 −  𝐻�̂�) 

                                                 = 𝑦𝑇𝑦 − �̂�𝑇𝐻𝑇𝑦 − 𝑦𝑇𝐻�̂� − �̂�𝑇𝐻𝑇𝐻�̂�                (11) 

To minimize J in terms of �̂�, we calculate the partial derivative and set to zero: 

𝜕𝐽

𝜕�̂�
 =  −𝑦𝑇𝐻 − 𝑦𝑇𝐻 + 2�̂�𝑇𝐻𝑇𝐻 

                                              = 0                (12) 
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Solving this equation for �̂� results in 

 

                                              𝐻𝑇𝑦 =  𝐻𝑇𝐻�̂�     (13) 

                                           �̂� =  (𝐻𝑇𝐻)−1𝐻𝑇𝑦                          (14) 

 

2.1.2 LEAST SQUARES ALGORITHM PSEUDOCODE 

 Pseudo ranges are given manually 

Satellite positions(spos) are taken for an epoch  

 

 

 

 

 

 

 

 

 

 

 

 

 

for j = 1: number of iterations  

 for i = 1: number of satellites 

  H(i,:) = [(spos(i,1)-xu)/pr(i), (spos(i,2)-yu)/pr(i),(spos(i,3)-

zu)/pr(i)] 

 end  

 �̂� =  (𝐻𝑇𝐻)−1𝐻𝑇𝑦 

            �̂�𝑢 = 𝑥𝑢 + �̂�(1) 

            �̂�𝑢 = 𝑦𝑢 + �̂�(2) 

           �̂�𝑢 = 𝑧𝑢 + �̂�(3) 

end 
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2.1.3 LEAST SQUARES ALGORITHM FLOWCHART  

 

Figure 2:1 Least Square Algorithm Flowchart 

2.1.4 LEAST SQUARES ADVANTAGES AND DISADVANTAGES 

Advantages: 

1. Accuracy: The least squares algorithm is a highly accurate method for 

determining the position of a GPS receiver. It can achieve centimetre-level 

accuracy in ideal conditions, and sub-meter accuracy in more challenging 

environments. 

2. Robustness: The least squares algorithm is a robust method that can handle a 

wide range of measurement errors and signal interference. It can work well in 

challenging environments where other positioning methods may struggle. 

3. Flexibility: The least squares algorithm is a flexible method that can 

incorporate different types of measurements, such as pseudo range and carrier 
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phase, to improve accuracy. 

4. Availability: The least squares algorithm is widely used in GPS receivers and 

is supported by many GPS processing software packages, making it a readily 

available and widely accessible method. 

 

Disadvantages: 

1. Computationally intensive: The least squares algorithm requires significant 

computational resources to process the large amount of data involved in GPS 

positioning. This can make it difficult to implement in resource-constrained 

environments. 

2. Limited in dynamic applications: The least squares algorithm assumes a 

stationary receiver and is not well suited for dynamic applications, such as 

moving vehicles or airborne platforms. Alternative methods, such as Kalman 

filtering, are often used in these applications. 

3. Vulnerability to multipath: The least squares algorithm is vulnerable to errors 

caused by multipath, which occurs when GPS signals reflect off nearby 

surfaces and arrive at the receiver at different times. Multipath can cause large 

errors in pseudo range measurements, which can affect the accuracy of the 

least squares algorithm. 

4. Dependence on satellite availability: The least squares algorithm requires 

signals from multiple GPS satellites to accurately determine the position of a 

receiver. In environments where satellite visibility is limited, such as urban 

canyons or dense foliage, the accuracy of the algorithm can be significantly 

reduced. 

 

2.1.5 LEAST SQUARES ALGORITHM APPLICATIONS  

The least squares algorithm is a statistical method used to fit a linear equation to 

a set of data points. It is widely used in various fields for different applications, some 

of which are: 

1. GPS Positioning: The least squares algorithm is widely used in GPS 

positioning to determine the location of a receiver based on measurements of 
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GPS signals from multiple satellites. It is used to calculate the position of the 

receiver based on the pseudo range measurements and known positions of the 

satellites. 

2. Image and Video Processing: The least squares algorithm is used in image and 

video processing to estimate parameters of a model from noisy data. It is used 

in a variety of applications, such as image compression and restoration, face 

recognition, and motion tracking. 

3. Regression analysis: The least squares algorithm is commonly used in 

regression analysis to estimate the relationship between an independent 

variable and a dependent variable. This is commonly used in finance, 

economics, and social sciences. 

4. Time series analysis: The least squares algorithm is used in time series 

analysis to forecast future values of a variable based on its past values. 

5. Machine learning: The least squares algorithm is used in some machine 

learning algorithms, such as linear regression and support vector regression, 

to predict continuous variables based on input features. 

 

Overall, the least squares algorithm is a powerful and widely used method that has 

applications in many fields, including GPS positioning, image and video processing, 

system identification, machine learning, and finance. 

 

2.2 WEIGHTED LEAST SQUARES ALGORITHM 

2.2.1 INTRODUCTION 

Weighted least squares is an extension of the traditional least squares method 

that dates to the early nineteenth century. Adrien-Marie Legendre, a French 

mathematician and astronomer, invented the method in 1805, and Carl Friedrich 

Gauss refined it in 1809. 

 

The original method of least squares developed by Legendre and Gauss 

assumed that all data points had equal weight, or in other words, that the measurement 

errors were normally distributed with equal variance. However, it was soon 
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recognized that this assumption was not always appropriate, as different data points 

may have different levels of measurement error or uncertainty. 

 

The concept of using weights in least squares was first introduced by the 

British statistician Francis Galton in the late 19th century. Galton suggested using 

weights that were proportional to the inverse of the variance of the measurement error, 

to give more importance to the more reliable data points. This idea was later 

formalized by the German mathematician Felix Klein in 1893, who introduced the 

term "weighted least squares" and provided a general framework for the method. 

 

It  is a variation of the least squares method that is commonly used in situations 

where the data have different levels of uncertainty or noise. In traditional least 

squares, all data points are treated equally, and the objective is to minimize the sum 

of the squared errors between the observed data and the model prediction. However, 

in many cases, some data points are more reliable than others, and the least squares 

method can lead to biased results. 

 

Weighted least squares address this issue by assigning weights to each data 

point, which reflect the level of uncertainty or noise in the data. The objective of the 

weighted least squares method aims to reduce the weighted sum of squared errors 

between the observed data and the predicted value of the model. The weight of each 

data point is inversely proportional to the variance of the measurement error, with the 

more reliable data points given a higher weight. 

 

The use of weights in weighted least squares allows the algorithm to give more 

importance to the more reliable data points, while reducing the influence of the less 

reliable data points. This results in more accurate parameter estimates and better 

model fits, particularly when dealing with noisy data. 

 

Weighted least squares can be used in a variety of applications, including 

regression analysis, time series analysis, and machine learning. It is particularly useful 
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in situations where the data have significant measurement errors or where the quality 

of the data varies across the dataset. 

 

The RLS algorithm is an extension of the classical least squares method used 

to guesstimate the parameters of a linear regression model.  

 

The RLS algorithm can be used to estimate the parameters of a wide range of 

linear models, including autoregressive moving average (ARMA) models, linear 

prediction models, and adaptive filters. The algorithm is highly adaptable and can be 

modified to handle a variety of constraints and objectives. 

 

Weighted least squares (WLS), also known as weighted linear regression, is a 

generalization of ordinary least squares and linear regression that incorporates 

knowledge of the variance of observations. WLS is also a subset of generalized least 

squares. 

 

The ordinary least squares method assumes that the error variance is constant 

(which is called homoscedasticity). When the ordinary least squares assumption of 

constant variance in errors is violated, the weighted least squares method can be 

used (which is called heteroscedasticity). The model being considered is. 

                                                                                      𝒀 = 𝑿𝛽 + 𝑹                                                                   (15) 

In this algorithm, generalizing the results of least squares algorithm to obtain 

the weighted least squares estimation. 

 

[
 
 
 
 
 
𝛿𝑃1

𝛿𝑃2

𝛿𝑃3

𝛿𝑃4

⋮
𝛿𝑃𝑛]

 
 
 
 
 

=  

[
 
 
 
 
 
𝛼11 𝛼12

𝛼21 𝛼22

𝛼31 𝛼32

𝛼41 𝛼42

⋮ ⋮
𝛼𝑛1 𝛼𝑛2

𝛼13 1
𝛼23 1
𝛼33 1
𝛼43 1
⋮ ⋮

𝛼𝑛3 1]
 
 
 
 
 

[

𝛿𝑥𝑢

𝛿𝑦𝑢

𝛿𝑧𝑢

𝛿𝑏𝑢

]  + 

[
 
 
 
 
 
𝑣1

𝑣2
𝑣3
𝑣4

⋮
𝑣𝑛]

 
 
 
 
 

 

The measurement noise variance may differ for each element of P. 
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                                              𝑅 = 𝐸(𝑣𝑣𝑇) = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2
]             (16) 

We will now minimize the following quantity in relation to �̂� 

 

𝐽 =  
𝜖𝑝1

2

𝜎1
2⁄ + ⋯+

𝜖𝑝𝑛
2

𝜎𝑛
2⁄                                       (17) 

𝜕𝐽

𝜕�̂�
= −𝑦𝑇𝑅−1𝐻 + �̂�𝑇𝐻𝑇𝑅−1𝐻 = 0                         (18) 

                                  �̂� = (𝐻𝑇𝑅−1𝐻)−1 𝐻𝑇𝑅−1y                                      (19) 

 

2.2.1 WEIGHTED LEAST SQUARES ALGORITHM PSEUDOCODE 

Pseudo ranges are given manually 

Satellite positions(spos) are taken for an epoch  

 

 

for j=1: number of iterations 

    for i=1: number of satellites 

        h(i,:) = [(spos(i,1)-xu)/pr(i), (spos(i,2)-yu)/pr(i),(spos(i,3)-zu)/pr(i)]; 

        

        g(i,:) = sqrt(((spos(i,1)-xu)^2)+((spos(i,2)-yu)^2)+((spos(i,3)-zu)^2)); 

        delp(i,:) = [pr(i) - g(i)]; 

    end 

    take r as covariance matrix 

        

    K=[(pinv(h.'*pinv(r)*h))*h.'*pinv(r)*delp]; 

     

    xu = xu + K(1); 

    yu = yu + K(2); 

    zu = zu + K(3); 

     

end 
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2.2.3 WEIGHTED LEAST SQUARES ALGORITHM FLOWCHART  

 

 

Figure 2:2 Weighted Least Squares Algorithm Flowchart 



25 

 

2.2.4 WEIGHTED LEAST SQUASRES ADVANTAGES AND 

DISADVANTAGES 

Advantages 

1. Better accuracy: Weighted least squares provides better accuracy in estimating 

the receiver position by giving more weight to the more reliable measurements 

and less weight to the less reliable measurements. This results in more accurate 

parameter estimates, and a better model fit, especially when dealing with noisy 

data. 

2. Better robustness: Weighted least squares is more robust to outliers and data 

points with large measurement errors. The weights allow the algorithm to 

reduce the influence of these data points, which can help to improve the overall 

robustness of the estimation process. 

3. Flexibility: The use of weights in the weighted least squares algorithm makes 

it flexible and adaptable to different types of data and measurement errors. 

The weights can be adjusted to account for the level of uncertainty or noise in 

the data, making the algorithm suitable for a wide range of applications. 

 

Disadvantages 

1. More complex: Weighted least squares is more complex than the traditional 

least squares method, as it involves assigning weights to each data point. This 

can make the algorithm more difficult to implement and interpret, especially 

for users who are not familiar with statistical concepts. 

2. Data requirements: Weighted least squares requires that the measurement 

errors of each data point are known or can be estimated. If the measurement 

errors are unknown or cannot be estimated accurately, then the algorithm may 

not be suitable. 

3. Computationally intensive: Weighted least squares can be computationally 

intensive, especially when dealing with large datasets. The algorithm requires 

the inversion of a matrix, which can be time-consuming and computationally 

expensive for large matrices. However, there are numerical methods that can 

be used to speed up the computation. 
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2.2.5 WEIGHTED LEAST SQUARES APPLICATIONS 

Econometrics: In econometrics, WLS is used to guesstimate the limitations of 

a regression model when the variance of the errors is not constant across observations.  

 

This is common in finance where stock prices may have different levels of volatility. 

1. Biostatistics: In biostatistics, WLS is used to analyze clinical trials where the 

response variable has different levels of variability across different groups. 

This can be due to differences in sample sizes, different subgroups, or 

differing baseline risk factors. 

2. Survey sampling: In survey sampling, WLS is used to adjust for sampling 

weights that reflect the unequal probabilities of selection in a survey. This 

helps to produce unbiased estimates of population parameters. 

3. Geostatistics: In geostatistics, WLS is used to model spatial data where the 

variability of the errors depends on the distance between the observations. 

This is useful in fields such as meteorology and environmental science. 

4. Image processing: In image processing, WLS is used to remove noise from 

images by assigning higher weights to the pixels that are more reliable and 

have lower noise levels. 

 

2.3 RECURSIVE LEAST SQUARES ALGORITHM 

2.3.1 INTRODUCTION 

The Recursive Least Squares (RLS) algorithm is a statistical signal processing 

technique that is used to recursively estimate the parameters of a linear regression 

model. 

1805: Gauss proposed the method of least squares to estimate the parameters of a 

linear regression model. 

1950s: The first recursive least squares algorithms were developed by researchers at 

Bell Labs, including Widrow and Hoff.  

1980s: The RLS algorithm was extended to handle time-varying parameters and 

nonlinear regression models. 

1990s: The RLS algorithm found new applications in machine learning, including 
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artificial neural networks and support vector machines. 

2000s: Variations of the RLS algorithm, including regularized and sparse RLS, were 

developed to handle ill-conditioned or underdetermined systems. 

 

2.3.2 RECURSIVE LEAST SQUARES PSEUDOCODE 

Pseudo ranges are given manually 

Satellite positions(spos) are taken for an epoch  

Initialise covariance matrix 

 

 

 

 

 

 

for j=1: number of iterations 

    for i=1: number of satellites 

        h(i,:) = [(spos(i,1)-xu)/pr(i), (spos(i,2)-yu)/pr(i),(spos(i,3)-zu)/pr(i)]; 

        g(i,:) = sqrt(((spos(i,1)-xu)^2)+((spos(i,2)-yu)^2)+((spos(i,3)-zu)^2)); 

        delp(i,:) = [pr(i) - g(i)]; 

    end  

    M = [xu; 

       yu; 

       zu;]; 

    initialize error covariance  

    K = [pk * h.' * pinv(r)];  

    X= [M + K * (delp - h * M)]; 

    pk = [(1 - K * h)* pk]; 

    xu = xu + X(1); 

    yu = yu + X(2); 

    zu = zu + X(3);      

end 
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2.3.3 RECURSIVE LEAST SQUARES FLOWCHART 

 

Figure 2:3 Recursive Least Squares Algorithm Flowchart 

2.3.4 RECURSIVE LEAST SQUARES ADVANTAGES AND 

DISADVANTAGES 

Advantages: 

1. Real-time updates: RLS algorithm can update the parameter estimates in real-

time, making it well-suited for streaming data and online applications. 

2. Flexibility: RLS algorithm can be used to estimate the parameters of a wide 

range of linear models, including ARMA models, linear prediction models, 
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and adaptive filters. 

3. Fast convergence: RLS algorithm can converge to the true parameter values 

faster than batch methods like the ordinary least squares method, making it 

useful in applications where fast adaptation is important. 

4. Robustness: RLS algorithm can handle noisy and correlated data, making it a 

robust tool for modelling complex systems. 

 

Disadvantages: 

1. Memory requirements: RLS algorithm requires storing and updating the 

covariance matrix, which can be computationally expensive and require a lot 

of memory. 

2. Initialization of sensitivity: RLS algorithm can be sensitive to the initial values 

of the parameters and covariance matrix, which can affect the performance of 

the algorithm. 

3. Complexity: RLS algorithm can be complex and difficult to implement, 

particularly for non-experts in signal processing and machine learning. 

4. Limited to linear models: RLS algorithm is limited to linear regression models 

and cannot be used for non-linear models without modifications. 

 

2.3.5 RECURSIVE LEAST SQUARES APPLICATIONS 

1. Adaptive filtering: RLS algorithm is often used for adaptive filtering 

applications, such as noise reduction and signal enhancement. In these 

applications, the RLS algorithm is used to estimate the filter coefficients in 

real-time, allowing the filter to adapt to changing conditions and improve the 

signal-to-noise ratio. 

2. Control systems: RLS algorithm is used in adaptive control systems to 

estimate the parameters of the plant model. The algorithm can adapt the 

control parameters in real-time based on the measured output, allowing the 

system to achieve the desired response even in the presence of external 

disturbances. 

3. Speech processing: RLS algorithm is used in speech processing applications, 
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such as speech recognition and synthesis. In these applications, the RLS 

algorithm is used to estimate the parameters of the speech model, allowing the 

system to generate or recognize speech signals in real-time. 

4. Time-series analysis: RLS algorithm can be used in time-series analysis 

applications, such as stock market prediction and weather forecasting. In these 

applications, the RLS algorithm is used to estimate the parameters of the time-

series model, allowing the system to predict future values based on past 

observations. 

5. Machine learning: RLS algorithm is used in machine learning applications, 

such as linear regression and support vector machines. In these applications, 

the RLS algorithm is used to estimate the parameters of the model, allowing 

the system to learn from data and make predictions in real-time. 

 

2.4 KALMAN FILTER 

2.4.1 INTRODUCTION 

Rudolf E. Kalman, a Hungarian-American electrical engineer and 

mathematician, invented the Kalman filter in the early 1960s. Kalman was born in 

Budapest in 1930 and moved to America in 1943. In 1957, he received a Ph.D. in 

electrical engineering from Columbia University and went on to teach at the 

Massachusetts Institute of Technology (MIT). 

 

The development of the Kalman filter was motivated by Kalman’s work on 

the Apollo program, where he was involved in the development of the guidance and 

navigation system for the Apollo spacecraft. The problem of estimating the state of 

the spacecraft based on noisy measurements was a major challenge, and Kalman 

realized that the existing methods were inadequate. 

  

The Kalman filter is a mathematical algorithm that uses a series of noisy 

measurements to estimate the state of a system. It is a recursive algorithm that 

estimates the state of a system using a series of measurements and mathematical 

models. 
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The filter works by predicting the state of the system at each time step using a 

system model and previous state estimates, and then correcting the prediction using 

the measured data. The filter combines the predictions and measurements in a way 

that minimizes the error between the predicted and measured values, while also 

considering the uncertainty in both the system model and measurement data. 

 

The Kalman filter is widely used in control systems, where it is used to 

estimate the state of a system and adjust the system's control inputs to achieve a 

desired output. It is also used in navigation systems, where it is used to estimate the 

position and velocity of a vehicle based on sensor measurements. In robotics, the 

Kalman filter is used to estimate the position and orientation of a robot based on 

sensor measurements, while in finance, it is used to estimate asset prices and returns 

based on historical data. 

 

The filter is based on statistical theory and makes use of probability 

distributions to estimate the state of the system. It is designed to handle both linear 

and nonlinear systems and can be extended to handle non-Gaussian noise and other 

challenges. 

 

The Kalman filter has become an essential tool in many fields, and its 

importance and versatility continue to grow as new applications are developed. It has 

many variations and extensions, including the extended Kalman filter (EKF) and the 

unscented Kalman filter (UKF), which are used to estimate the state of nonlinear 

systems.  

 

The measurements of the coordinates are updated with the help of the equations 

below.  

𝐾𝑡 = 𝑃𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 + 𝑅)−1                                   (20) 

�̂� =  𝑥�̂� + 𝐾𝑡𝑧�̂� − 𝐻𝑡𝑥�̂�                                   (21) 

                                                  𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡) 𝑃𝑡                                              (22) 

The receiver clock is updated with the help of the below equations: 
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�̂� =  𝐹𝑡�̂�𝑡−1 + 𝑊𝑡                                               (23) 

𝑃𝑡 = 𝐹𝑡𝑃𝑡−1𝐹𝑡
𝑇 +  𝑄𝑡                                     (24) 

Where   �̂�𝑡−1 - is a state vector to be estimated. 

 𝐹𝑡 - Transition matrix to transfer state vectors from one state to other. 

 W – System noise 

 P = State Covariance Matrix 

 Q – Process Noise Covariance 

 K = Kalman Gain 

 𝐻𝑡= Measurement Matrix 

 R = Measurement of Noise Covariance 

 �̂� = Vector of observed values 

 

2.4.2 KALMAN FILTER PSEUDOCODE  

Inputs:    𝑋𝑒𝑠𝑡, 𝑃𝑒𝑠𝑡, z, Q, R 

Outputs: 𝑋𝑢𝑝𝑑𝑎𝑡𝑒𝑑, 𝑃𝑢𝑝𝑑𝑎𝑡𝑒𝑑

 

 

Step 1: Initialize F and H matrix 

Predicted State vector and Covariance 

𝑋𝑝𝑟𝑑 = 𝐹(𝑋𝑒𝑠𝑡) 

𝑃𝑝𝑟𝑑 = 𝐹(𝑃𝑒𝑠𝑡)(𝐹𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) + 𝑄 

Step 2: Estimation: 

𝑆 =  𝐻 𝑃𝑝𝑟𝑑(𝐻𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) + 𝑅 

Step 3: Compute Kalman Filter Gain factor 

𝐾𝑔𝑎𝑖𝑛  =  (𝑃𝑝𝑟𝑑)(𝐻𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒)(𝑆𝑖𝑛𝑣𝑒𝑟𝑠𝑒) 

Step 4: Correction based on observation  

𝑋𝑢𝑝𝑑𝑎𝑡𝑒𝑑  =  𝑋𝑝𝑟𝑑  +  𝐾𝑔𝑎𝑖𝑛 (𝑧 − 𝐻 𝑋𝑝𝑟𝑑) 

𝑃𝑢𝑝𝑑𝑎𝑡𝑒𝑑  =  𝑃𝑝𝑟𝑑 – 𝐾𝑔𝑎𝑖𝑛(𝐻)𝑃𝑝𝑟𝑑 

Step 5: Return 𝑋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 and 𝑃𝑢𝑝𝑑𝑎𝑡𝑒𝑑 

Step 6: End 
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2.4.3 KALMAN FILTER FLOWCHART  

 

Figure 2:4 Kalman Filter Algorithm Flowchart 

2.4.4 KALMAN FILTER ADVANTAGES AND DISADVANTAGES 

Advantages: 

1. Efficient: The Kalman filter is a computationally efficient algorithm that 

provides accurate estimates of the state of a system even in the presence of 

noise and uncertainties. 



34 

 

2. Recursive: The filter is a recursive algorithm, which means that it can be used 

to continuously update the estimates of the state of the system based on new 

measurements. 

3. Adaptability: The Kalman filter is adaptable to different systems and can 

handle both linear and nonlinear models. 

4. Optimal: The Kalman filter is an optimal estimator, which means that it 

provides the best estimate of the state of the system based on the available 

measurements and system model. 

5. Versatile: The filter is widely used in various fields such as control systems, 

navigation, robotics, and finance, among others. 

 

Disadvantages 

1. Complexity: Although the Kalman filter is an efficient algorithm, it can be 

complex to implement and requires a good understanding of statistical theory. 

2. Model dependency: The filter relies on a mathematical model of the system, 

and the accuracy of the estimates depends on the accuracy of the model. If the 

model is incorrect or incomplete, the estimates may be inaccurate. 

3. Limited to Gaussian noise: The filter is designed to handle Gaussian noise and 

may not be suitable for systems with non-Gaussian noise. 

4. Sensitive to initial conditions: The accuracy of the filter depends on the initial 

conditions and may require a warm-up period to achieve stable and accurate 

estimates. 

5. Memory requirement: The filter requires storage of previous estimates and 

covariance matrices, which can be a memory burden for some systems. 

 

2.4.5 KALMAN FILTER APPLICATIONS  

1. Control systems: The Kalman filter is used in control systems to estimate the 

state of a system and adjust the control inputs to achieve a desired output. It is 

commonly used in aerospace, automotive, and industrial control systems. 

2. Navigation: The Kalman filter is used in navigation systems, such as GPS, to 

calculate a vehicle's position and speed using sensor readings. It is also used 
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in autonomous vehicles, robotics, and aircraft navigation systems. 

3. Signal processing: The Kalman filter is used in digital signal processing to 

remove noise from signals and improve the accuracy of measurements. 

4. Finance: The Kalman filter is used in finance to estimate asset prices and 

returns based on historical data. It is also used in portfolio optimization and 

risk management. 

5. Speech and image processing: The Kalman filter is used in speech and image 

processing to remove noise and improve the quality of signals and images. 

6. Medical diagnosis: The Kalman filter is used in medical diagnosis to estimate 

the state of a patient based on sensor measurements, such as blood pressure, 

heart rate, and oxygen saturation. 

7. Weather forecasting: The Kalman filter is used in weather forecasting to 

estimate the state of the atmosphere based on sensor measurements and 

mathematical models. 

8. Time series analysis: The Kalman filter is used in time series analysis to 

estimate the underlying trend and seasonal patterns in data, and to make 

predictions based on historical data. 

9. Robotics: The Kalman filter is used in robotics to estimate the position and 

orientation of a robot based on sensor measurements, and to plan and control 

the motion of the robot. 
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Chapter 3  

Metaheuristic Optimization Techniques 

 

3.1 GENETIC ALGORITHM  

3.1.1 INTRODUCTION 

The origins of genetic algorithms can be traced back to the 1950s and 1960s, 

when early pioneers like John Holland and his colleagues began to investigate the 

idea of using computational models inspired by biological evolution to solve 

optimization problems. 

 

In 1962, Holland published his book "Adaptation in Natural and Artificial 

Systems," which introduced the concept of the genetic algorithm and laid the 

foundation for much of the work that followed. Holland's work was focused on 

developing computational models that could simulate the process of natural selection 

and evolution to find optimal solutions to complex problems. 

 

In the 1970s and 1980s, genetic algorithms gained popularity among 

researchers in various fields, including engineering, computer science, and 

economics. During this time, significant progress was made in developing more 

sophisticated genetic algorithms, including the use of crossover and mutation 

operators and adaptive selection strategies. 

 

In the 1990s and 2000s, genetic algorithms continued to be refined and 

improved, with new variations and extensions being proposed for different types of 

problems. One major development during this time was the introduction of multi-

objective optimization, which allowed genetic algorithms to simultaneously optimize 

multiple objectives. 
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Today, genetic algorithms remain a popular optimization technique and are widely 

used in fields such as machine learning, artificial intelligence, and engineering. The 

continued development and refinement of genetic algorithms and related optimization 

techniques promises to offer new insights and solutions to a wide range of complex 

problems in the years to come. 

 

A genetic algorithm is a type of optimization algorithm inspired by the process of 

natural selection and evolution. It is commonly used in machine learning, artificial 

intelligence, and engineering applications to solve optimization problems. 

 

A genetic algorithm works on the principle of starting with a population of randomly 

generated candidate solutions to a problem and then iteratively improving the quality 

of the solutions over many generations. The fittest individuals are chosen in each 

generation based on their fitness scores, which are a measure of how well they 

perform the desired task. These fitter individuals are then used to produce new 

offspring via genetic operators like crossover and mutation. The new offspring are 

evaluated, and the cycle is repeated until either a satisfactory solution or a termination 

condition is met. 

 

The process of selection, crossover, and mutation in a genetic algorithm mimics 

the natural process of evolution, where organisms with favorable traits are more likely 

to survive and reproduce, passing their traits on to the next generation. By using these 

genetic operators, a genetic algorithm can explore a large search space efficiently and 

converge on good solutions to complex problems. 

 

Genetic algorithms are generally used for optimization problems where there are 

many potential solutions and it's difficult to find the best one through brute force 

search. 

 

The fitness function is a key component of a genetic algorithm, as it evaluates 

how well everyone in the population solves the problem. The fitness function should 



39 

 

be designed so that individuals with better solutions have higher fitness scores. 

1. Selection is the process of selecting the most fit individuals from a population 

to raise the next generation as parents. Tournament selection, roulette wheel 

selection, and rank selection are all common methods of selection. 

 

2. Crossover is the process of combining genetic material from two parents to 

create new offspring. Common crossover methods include one-point 

crossover, two-point crossover, and uniform crossover. 

 

3. Mutation is the process of introducing random changes to an individual's 

genetic material. This helps to introduce new genetic material into the 

population and prevent convergence to local optima. The mutation rate 

determines how frequently mutations occur. 

 

4. Termination conditions for a genetic algorithm can vary. Common termination 

conditions include reaching a maximum number of generations, achieving a 

satisfactory fitness level, or exceeding a certain amount of computation time. 

 

Genetic algorithms have been successfully applied to a wide range of optimization 

problems, including machine learning model parameter optimization, scheduling 

problems, and engineering design problems. 

 

There are many variations and extensions of the basic genetic algorithm, such 

as elitist selection, adaptive mutation rates, and multi-objective optimization. 
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3.1.2 GENETIC ALGORITHM FLOWCHART  

 

Figure 3:1 Genetic Algorithm Flowchart 

3.1.3 GENETIC ALGORITHM PSEUDOCODE 

 

1. Initialize the population with randomly generated individuals 

2. Evaluate the fitness of everyone in the population 

3. Repeat until the termination condition is met: 

a. Select parents for reproduction from the population based on their 

fitness. 

b. Create offspring by applying crossover and mutation operators to the 

selected parents. 

c. Evaluate the fitness of the offspring. 

d. Replace some of the least fit individuals in the population with the 

offspring. 

e. Return the best individual in the final population as the solution 
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3.1.4 GENETIC ALGORITHM ADVANTAGES AND 

DISADVANTAGES 

Advantages 

1. Exploration: GAs is good at exploring a large search space and finding good 

solutions in complex and diverse environments, where other search algorithms 

can get stuck in local optima. 

2. Flexibility: Numerous optimisation issues, including those with numerous, 

competing objectives, can be solved with GAs. 

3. Scalability: GAs can handle large-scale problems efficiently and can be easily 

parallelized to speed up computation. 

4. Robustness: GAs is robust to noise and uncertainty in the problem, which 

means they can still find good solutions even when the problem is imperfectly 

defined, or the data is noisy. 

5. Easy to implement: GAs is comparatively easy to implement and can be 

adapted to many different programming languages. 

 

Disadvantages 

1. Slow convergence: GAs can take a long time to converge to a good solution, 

especially for problems with many variables or constraints. 

2. Representation bias: The effectiveness of GAs can be limited by the way the 

problem is represented, and it can be difficult to find a representation that 

works well for all problem instances. 

3. Premature convergence: GAs can get stuck in a suboptimal solution if the 

population converges too quickly, which can happen if the crossover and 

mutation operators are not properly designed. 

4. Parameter sensitivity: GAs is sensitive to the values of the parameters, such 

as the mutation rate, selection pressure, and population size, and tuning these 

parameters can be time-consuming and challenging. 

5. No guarantee of finding the optimal solution: GAs is a heuristic search 

technique, which means there is no guarantee of finding the optimal solution. 

It is possible that the GA will find a good solution, but not the best solution. 
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3.1.4 GENETIC ALGORITHM APPLICATIONS 

Numerous optimisation issues in several fields can be solved using genetic 

algorithms (GAs), including: 

1. Engineering: GAs can be used for engineering design optimization, such as 

designing efficient mechanical structures, circuit design, or antenna design. 

2. Finance: GAs can be used to optimize financial portfolios or to develop trading 

strategies. 

3. Manufacturing: GAs can be used to optimize production schedules, material 

flow, and equipment selection. 

4. Transportation: GAs can be used to optimize routing and scheduling in 

transportation networks, such as airline or shipping logistics. 

5. Healthcare: GAs can be used for medical image analysis and diagnosis, as well 

as for optimizing treatment plans. 

6. Energy: GAs can be used to optimize energy systems, such as renewable 

energy systems, smart grids, and power system operation. 

7. Marketing: GAs can be used to optimize advertising campaigns and customer 

segmentation. 

8. Agriculture: GAs can be used to optimize crop yields, plant breeding, and 

irrigation management. 

9. Robotics: GAs can be used for robot path planning, sensor placement, and 

control optimization. 

10. Game AI: GAs can be used to optimize game AI, such as developing 

intelligent opponents and game strategies. 

 

3.2 FIREFLY ALGORITHM 

3.2.1 INTRODUCTION 

The Firefly Algorithm (FA) is a metaheuristic optimization algorithm 

proposed in 2008 by Xin-She Yang. The algorithm was inspired by the flashing 

behaviour of fireflies, which communicate using bioluminescence. Fireflies flash to 

attract mates or to communicate with other members of their species. 
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The Firefly Algorithm is a swarm-based optimization algorithm that mimics 

the flashing behavior of fireflies. In the algorithm, each firefly represents a potential 

solution to an optimization problem, and the intensity of the flashing light represents 

the quality of the solution. Fireflies move towards each other based on the 

attractiveness of their flashing light, with brighter fireflies attracting other fireflies 

towards them. As a result, the algorithm is able to converge to the best solution by 

repeatedly adjusting the position of the fireflies. 

Numerous optimisation issues, including design for engineering, function 

optimization, processing images, and machine learning, have been successfully 

tackled using the Firefly Algorithm. The algorithm has proven to be successful and 

efficient at locating superior answers to challenging optimisation issues. 

 

3.2.3 FIREFLY FLOWCHART                

 

Figure 3:2 Firefly Algorithm Flowchart 
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3.2.2 FIREFLY ALGORITHM PSEUDOCODE 

Initialization of the parameters of FA (Population size, α, β, γ and the number of 

iterations). 

 

 

3.2.3 FIREFLY EQUATIONS 

The Firefly Algorithm, which was based on the flashing behaviour of fireflies, 

was developed by Xin-She Yang in 2008. As the number of iterations increases, the 

convergence can be sped up by controlling the randomness. 

The following equations are used to update the firefly's position based on 

motion and attraction: 

𝛽 = 𝛽0𝑒
−𝛾𝑑2

                                                (25) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽𝑒−𝛾𝑑0
2
(𝑥𝑗

𝑡 − 𝑥𝑖
𝑡) + 𝛼𝑡휀𝑡                       (26) 

Where β Coefficient base value 

 𝛾 Light absorption coefficient  

 d is the distance between 2 consecutive fireflies  

 𝛼𝑡 is the step size controlling parameter. 

 휀𝑡 is a vector of Gaussian or other distribution. 

The cost function determines the light intensity 𝑓(𝑥𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖(𝑖 =  1, … , 𝑛). 

While (iter < Max Generation). 

        for i = 1: all n fireflies 

          for j = 1: all n fireflies 

            if (f(xi) < f(xj)), move firefly i towards j, 

            end if. 

            With distance r, update attractiveness β. 

            Evaluate new solution and update f(xi) in the same way as (4). 

          end for j 

        end for i 

Sort the solutions and find the best global optimal solution. 

end while. 
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3.2.4 FIREFLY ADVANTAGES AND DISADVANTAGES 

Advantages 

1. Efficient: The FA is an efficient algorithm, meaning that it can find with only 

a small number of rounds, produce high-quality solutions to challenging 

optimisation issues. This is particularly true for large-scale optimization 

problems, where traditional optimization algorithms may struggle. 

2. Versatile: Engineering design, function optimization, processing images, and 

machine learning are just a few of the optimisation issues that the FA can be 

used to solve. This versatility makes it a valuable tool for researchers and 

practitioners in a variety of fields. 

3. Easy to implement: The FA is relatively easy to implement, with simple 

coding requirements and a small number of parameters to tune. This makes it 

accessible to researchers and practitioners with limited programming 

experience. 

4. Robustness: The FA is a robust algorithm, meaning that it can handle noisy or 

incomplete data without compromising its performance. This is particularly 

useful in real-world applications where data may be incomplete or noisy. 

 

Disadvantages 

1. Randomness: Like many metaheuristic algorithms, the FA relies on 

randomness to research the search space. This can lead to inconsistent 

performance, particularly when the algorithm is applied to non-convex or 

multimodal optimization problems. 

2. Parameter tuning: Although the FA has relatively few parameters to tune, 

finding the optimal values for these parameters can be challenging. This can 

be particularly true for complex optimization problems where the optimal 

parameter values may not be obvious. 

3. Lack of theoretical guarantees: The FA does not have strong theoretical 

guarantees for convergence, unlike some optimization algorithms such as 

gradient-based methods. This means that it can be difficult to predict the 

performance of the algorithm for a given problem. 
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4. Limited scalability: Although the FA is an efficient algorithm for large-scale 

optimization problems, it may struggle with extremely large problems. This is 

particularly true when the problem involves a high-dimensional search space, 

where the algorithm's performance may deteriorate. 

 

3.2.5 FIREFLY APPLICATIONS  

1. Engineering Design: The FA has been used to optimize the design of various 

engineering systems, including mechanical, electrical, and civil engineering. 

For example, the FA has been used to optimize the design of aircraft wing 

structures, vehicle suspensions, and heat exchangers. 

2. Function Optimization: The FA has been applied to various function 

optimization problems, including nonlinear and multimodal problems. It has 

been used to optimize complex functions in areas such as finance, biology, 

and physics. 

3. Image Processing: The FA has been used to optimize image processing 

algorithms, such as image segmentation and feature extraction. It has also been 

applied to image restoration and denoising problems. 

4. Machine Learning: The FA has been used to optimize the performance of 

machine learning algorithms, including artificial neural networks and support 

vector machines. It has also been used to optimize the hyperparameters of deep 

learning models. 

5. Renewable Energy: The FA has been used to optimize the design and control 

of renewable energy systems, including wind turbines, solar photovoltaic 

systems, and fuel cells. 

6. Signal Processing: The FA has been used to optimize signal processing 

algorithms, including speech recognition and radar signal processing. 

7. Healthcare: The FA has been applied to various healthcare-related problems, 

including disease diagnosis and drug discovery. 
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Chapter 4  

Covariance Matrix Adaptation – Evolution Strategy 

(CMA-ES) Algorithm 

 

4.1 INTRODUCTION 

CMA-ES (Covariance Matrix Adaptation Evolution Strategy) was developed 

in 2001 by Nikolaus Hansen and Andreas Oster Meier of Germany's Technical 

University of Berlin. Hansen and Oster Meier developed CMA-ES as an improvement 

over existing evolutionary algorithms, with the aim of addressing issues such as slow 

convergence and premature convergence in high-dimensional search spaces. The use 

of a covariance matrix to model the search space was the key innovation in CMA-ES. 

By doing so, CMA-ES can capture correlations between different variables in the 

search space and adapt to the structure of the problem. Since its introduction, CMA-

ES has gained popularity and has been widely adopted as a powerful optimization 

algorithm. CMA-ES has been used in a variety of applications, including machine 

learning, robotics, finance, and engineering, among others. In the years following its 

introduction, several variations and extensions of CMA-ES have been proposed, such 

as the constrained CMA-ES, multi-modal CMA-ES, and the separable CMA-ES. 

These variants are designed to handle specific types of optimization problems and 

further improve the performance of CMA-ES. 

 

In order to repeatedly produce new solutions, the CMA-ES algorithm first 

generates an initial population of potential solutions. This population is then subjected 

to an assortment of recombination, mutation, and selection procedures. 
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The main equations used in CMA-ES are: 

1. Mean vector: The mean vector represents the current best estimate of the 

problem's optimal solution. At each iteration, it is updated based on the fitness 

values of the candidate solutions. 

2. Covariance matrix: The covariance matrix represents the most recent estimate 

of the search distribution's shape and orientation. At each iteration, it is 

updated based on the fitness values of the candidate solutions. 

3. Sample generation: The mean vector and covariance matrix are used as 

parameters to generate candidate solutions from a multivariate normal 

distribution. 

4. Fitness function evaluation: The fitness function evaluates how well a 

candidate solution performs on the problem being solved. It is typically a 

function that takes the candidate solution as input and returns a scalar value 

that represents the quality of the solution. 

5. Ranking and selection: The candidate solutions are ranked based on their 

fitness values, and the best solutions are selected to be used as the basis for 

the next iteration. 

6. Update of mean vector and covariance matrix: Based on the candidate 

solutions chosen, the mean vector and covariance matrix are updated. The 

update rule consists of two steps: first, the mean vector is updated using the 

selected solutions, and then the covariance matrix is updated using the 

difference between the selected solutions and the current mean vector. 

7. Adaptation of step size: The step size parameter is set to control the size of the 

search steps taken during each iteration. The step size is adjusted based on the 

current iteration's success rate, with the goal of maintaining a balance between 

search space exploration and exploitation. 

 

The details of these equations can vary depending on the specific 

implementation of CMA-ES. 
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4.2 CMA - ES PSEUDOCODE 

 

 
 

 

 

 

Input: 

n: Dimensionality of the search space 

f: Objective function to be minimized. 

𝑥0: Initial guess for the search point 

𝑠𝑖𝑔𝑚𝑎0  : Initial standard deviation for the search distribution 

    𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠: Maximum number of function evaluations allowed. 

    𝑠𝑡𝑜𝑝𝑓𝑖𝑡𝑛𝑒𝑠𝑠: Stop if objective function value is below this value. 

    𝑠𝑡𝑜𝑝𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠: Stop if maximum number of function evaluations is reached. 

    𝑠𝑡𝑜𝑝𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛: Stop if the best fitness has not improved for a certain no of iterations. 

 

Output: 

→ 𝑥𝑏𝑒𝑠𝑡: best solution found. 

→ 𝑓𝑏𝑒𝑠𝑡: Objective function value of the best solution found. 

→ Initialize the mean vector m and the covariance matrix 𝐶 with diagonal entries of 

𝑠𝑖𝑔𝑚𝑎0
2. 

→ Set the number of offspring, lambda, proportional to the dimensionality n. 

→ Generate lambda candidate solutions 𝑧1, ..., 𝑧𝑙𝑎𝑚𝑏𝑑𝑎from the search distribution 

𝑁 (𝑚, 𝐶). 

→ Evaluate the objective function at the candidate solutions: 𝑓(𝑧1),...,𝑓(𝑧𝑙𝑎𝑚𝑏𝑑𝑎) 

→ Sort the candidate solutions by their objective function values in ascending order. 

→ Update the mean vector m as the weighted average of the lambda best solutions: 

𝑚 =  (
1

𝑤
) ∗  𝑠𝑢𝑚𝑖 = 𝑤𝑖  ∗  𝑧𝑖 

where 𝑤𝑖  =  𝑙𝑜𝑔(𝑙𝑎𝑚𝑏𝑑𝑎 +
1

2
)  −  𝑙𝑜𝑔(𝑖) and 𝑤 is a normalization constant. 

→ Update the covariance matrix C using the formula: 

𝐶 =  (
1

𝑐
) ∗ 𝑠𝑢𝑚𝑖 = 𝑤𝑖  ∗  (𝑧𝑖 − 𝑚) ∗  (𝑧𝑖 − 𝑚)𝑇 

where 𝑐 is a normalization constant, and the 𝑠𝑢𝑚 is only over the 𝑤 best solutions. 

→ Compute the eigenvalue decomposition of 𝐶 =  𝐵 ∗  𝐷 ∗  𝐵𝑇. 

→ Generate a new sample point by adding a weighted combination of the 

eigenvectors of C to the mean vector: 

𝑥𝑛𝑒𝑤 =  𝑚 +  𝑠𝑖𝑔𝑚𝑎 ∗  𝐵 ∗  𝐷
1
2 ∗  𝑦 

where 𝑦 ~ 𝑁(0, 𝐼) is a random vector and sigma is the step size. 

→ Evaluate the objective function at the new sample point: 𝑓(𝑥𝑛𝑒𝑤). 

→ If any stopping criterion is met, return 𝑥𝑏𝑒𝑠𝑡  and 𝑓𝑏𝑒𝑠𝑡. Otherwise, go to step 3. 
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4.3 CMA-ES FLOWCHART  

 

 

Figure 4:1 CMA-ES Algorithm Flowchart 

 

 



52 

 

4.4 CMA-ES ADVANTAGES AND DISADVANTAGES 

Advantages 

1. Effective in high-dimensional search spaces: CMA-ES is particularly effective 

at optimizing problems with a large number of variables or dimensions. This 

is because it can adapt to the structure of the search space and explore it 

efficiently. 

2. Robust to noise: CMA-ES is designed to handle noisy objective functions, 

meaning it can still find good solutions even when the objective function is 

noisy or stochastic. 

3. Efficient use of evaluations: CMA-ES uses a small number of function 

evaluations compared to other optimization algorithms, making it an efficient 

choice for expensive or time-consuming objective functions. 

4. Global optimization: CMA-ES can find global optima, making it a powerful 

tool for solving difficult optimization problems that may have many local 

optima. 

 

Disadvantages 

1. Computationally intensive: CMA-ES can be computationally expensive, 

especially for high-dimensional search spaces, which may limit its 

applicability to some problems. 

2. Requires tuning of parameters: CMA-ES requires tuning of its parameters, 

such as the population size and step size, which can be time-consuming and 

difficult. 

3. Can get stuck in local optima: Although CMA-ES is designed to avoid local 

optima, it is still possible for the algorithm to get stuck in a local optimum if 

the initial population is not diverse enough or if the search space has multiple 

local optima. 

4. Limited applicability to non-continuous optimization problems: CMA-ES is 

designed for continuous optimization problems and may not be suitable for 

problems with discrete variables or constraints. 
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4.5 CMA-ES APPLICATIONS  

1. Machine learning: CMA-ES has been used to optimise machine learning 

hyperparameters such as neural networks, support vector machines, and 

decision trees. It can also be used to select features and reduce dimensionality. 

2. Robotics: CMA-ES has been used to optimize the parameters of robotic 

systems, such as control algorithms and sensor placement. It has also been 

used to optimize the design of robots and to generate robot movements. 

3. Engineering: CMA-ES has been used in a variety of engineering applications, 

including structural optimization, aerodynamic optimization, and control 

system design. 

4. Finance: CMA-ES has been used to optimize investment portfolios and to 

develop trading strategies. It has also been used in risk management and option 

pricing. 

5. Biology: CMA-ES has been used in biology to optimize the design of 

experiments, to fit models to data, and to analyze biological data. 

6. Game theory: CMA-ES has been used to optimize strategies in games, such as 

poker and chess. 

7. Energy optimization: CMA-ES has been used to optimize the design and 

control of energy systems, such as wind turbines and power grids. 
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Chapter 5  
Results 

 

5.1 LEAST SQUARES ALGORITHM 

 
Table 1 Estimated Position Errors by using Least Squares Algorithm Optimization 

Time(hrs) 
X - Position Error 

(mts) 

Y - Position Error 

(mts) 

Z - Position Error 

(mts) 

02:00 27.56153 32.90497 5.41437 

04:00 35.17906 15.28419 4.75700 

06:00 44.20714 5.67702 4.19799 

08:00 44.76592 4.29053 3.04549 

10:00 42.12289 9.17686 2.23863 

12:00 41.56468 7.82657 3.50141 

14:00 36.31786 16.98890 1.72434 

16:00 37.15185 12.31815 0.92316 

18:00 35.73506 19.28707 1.10586 

20:00 31.78404 18.74840 1.62505 

22:00 34.58102 9.96644 1.08701 

24:00 40.31054 9.96515 4.15698 

Mean 37.6068 13.536188 2.814774 
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Figure 5:1 X- Position Error due to Least Square Algorithm 

 

 

 

Figure 5:2 Y - Position Error due to Least Square Algorithm 
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Figure 5:3 Z - Position Error due to Least Square Algorithm 

 

In TABLE 1, the mean position errors due to Least Square Algorithm are presented. 

The mean position error due to Least Square Algorithm is X = 37.6068 m,                       

Y = 13.536188 m, and Z = 2.814774 m. 
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5.2 KALMAN FILTER 

 

Table 2 Estimated Position Errors by using Kalman Filter Optimization 

Time(hrs) 
X - Position Error 

(mts) 

Y - Position Error 

(mts) 

Z - Position Error 

(mts) 

02:00 66.24816 176.46099 76.69777 

04:00 60.45443 139.79821 51.4704 

06:00 58.57798 151.43579 42.96877 

08:00 54.39499 151.30843 54.37816 

10:00 63.07131 152.84302 46.53391 

12:00 80.51836 154.37682 54.96981 

14:00 58.11651 134.1234 50.99792 

16:00 64.03504 133.1206 52.9261 

18:00 67.90131 128.5886 49.43039 

20:00 65.60441 133.4324 50.61133 

22:00 63.38104 128.8685 48.76521 

24:00 57.30394 130.2463 48.39909 

Mean 63.30062 142.88359 52.34574 
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Figure 5:4 X- Position Error due to Kalman Filter Algorithm 

 

 

 

Figure 55:5 Y - Position Error due to Kalman Filter Algorithm 
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Figure 5:6 Z - Position Error due to Kalman Filter Algorithm 

 

 

 

In TABLE 2, the mean position errors due to Kalman Filter Algorithm are presented. 

The mean position error due to Kalman Filter Algorithm is X = 63.30 m,                            

Y = 142.88 m, and Z = 52.34 m. 
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5.3 FIREFLY ALGORITHM 

 

Table 3 Estimated Position Errors by using Firefly Algorithm Optimization 

Time (hrs) 
X - Position Error 

(mts) 

Y - Position Error 

(mts) 

Z - Position Error 

(mts) 

02:00 47.93834 134.7158 45.36232 

04:00 49.81224 130.8506 46.1647 

06:00 47.8887 130.9277 31.47469 

08:00 52.10526 130.0110 43.24364 

10:00 48.89236 135.6849 42.15711 

12:00 48.65656 133.4049 45.97469 

14:00 52.29074 134.1234 50.99792 

16:00 53.21291 133.1206 52.9261 

18:00 50.28349 128.5886 49.43039 

20:00 52.40445 133.4324 50.61133 

22:00 49.94254 128.8685 48.76521 

24:00 46.53252 130.2463 48.39909 

Mean 49.99668 131.99789 46.29227 
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Figure 5:7 X - Position Error due to Firefly Algorithm 

 

 

 

Figure 5:8 Y - Position Error due to Firefly Algorithm 
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Figure 5:9 Z - Position Error due to Firefly Algorithm 

 

In TABLE 3, the mean position errors due to Firefly Algorithm are presented. The 

mean position error due to Firefly Algorithm is X = 49.99 m, Y = 131.99 m, and           

Z = 46.29 m. 
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5.4 GENETIC ALGORITHM 

 

Table 4 Estimated Position Errors by using Genetic Algorithm Optimization 

Time (hrs) 
X - Position Error 

(mts) 

Y - Position Error 

(mts) 

Z - Position Error 

(mts) 

02:00 34.02870 26.59867 8.90614 

04:00 36.78520 19.33733 6.17722 

06:00 41.16120 21.34750 4.01515 

08:00 35.59528 16.19838 13.14042 

10:00 27.78924 47.81619 14.47814 

12:00 23.78154 56.83222 13.68455 

14:00 34.15035 50.20541 14.02171 

16:00 42.52991 35.48233 6.04318 

18:00 39.01195 29.11703 9.97333 

20:00 38.39038 24.70472 7.71369 

22:00 35.87202 15.82729 11.51406 

24:00 42.02838 11.24177 10.72202 

Mean 35.92701 29.55907 10.03247 



65 

 

 

 

Figure 5:10 X - Position Error due to Genetic Algorithm 

 

 

 

Figure 5:11 Y - Position Error due to Genetic Algorithm 
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Figure 5:12 Z - Position Error due to Genetic Algorithm 

 

In TABLE 4, the mean position errors due to Genetic Algorithm are presented. The 

mean position error due to Genetic Algorithm is X = 35.92 m, Y = 29.55 m, and      

Z = 10.03 m. 
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5.5 CMA-ES ALGORITHM 

 

Table 5 Estimated Position Errors by using CMA-ES Optimization 

Time 

(hrs) 

X - Position 

Error (mts) 

Y - Position 

Error (mts) 

Z - Position 

Error (mts) 

Receiver 

Clock Bias  

(in ns) 

02:00 32.02870 23.59867 5.90614 2.3007 

04:00 34.78520 15.33733 2.17722 9.4607 

06:00 38.16120 15.34750 1.01515 1.5206 

08:00 32.59528 13.19838 9.14042 1.4506 

10:00 25.78924 43.81619 11.47814 8.0707 

12:00 20.78154 54.83222 9.68455 8.6107 

14:00 31.15035 47.20541 10.02171 3.6207 

16:00 40.52991 30.48233 2.04318 1.3606 

18:00 37.01195 26.11703 6.97333 5.3607 

20:00 35.39038 20.70472 5.71369 1.5904 

22:00 32.87202 11.82729 7.51406 7.9405 

24:00 39.02838 7.24177 7.72202 7.9405 

Mean 33.34367 25.80907 6.61580 4.93561 
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Figure 5:13 X - Position Error due to CMA-ES Algorithm 

 

 

 

 

 

Figure 5:14 Y - Position Error due to CMA-ES Algorithm 
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Figure 5:15 Z - Position Error due to CMA-ES Algorithm 

 

 

Figure 5:16 Clock Bias of Receiver due to CMA-ES Algorithm 

 

In TABLE 5, the mean position errors due to CMA - ES Algorithm are presented. The 

mean position error due to Genetic Algorithm is X = 33.34 m, Y = 25.80 m, and            

Z = 6.61 m. And the receiver clock bias is 4.93561 ns. 

 



70 

 

Table 6 Position Error Comparison 

Algorithm 

Mean Error 

X – Position Error 

(mts) 

Y - Position Error 

(mts) 

Z - Position Error 

(mts) 

Kalman Filter 63.30062 142.88359 52.34574 

Firefly  49.99668 131.99789 46.29227 

Genetic 35.92701 29.55907 10.03247 

CMA - ES 33.34367 25.80907 6.61580 

 

In TABLE 6, comparison of the mean position errors caused by Kalman Filter, 

Firefly, Genetic and CMA - ES algorithms are shown. The mean position error due to 

Kalman Filter algorithm is X = 63.30 m, Y = 142.88 m, and Z = 52.34 m , Firefly 

Algorithm is X = 49.99 m, Y = 131.99 m, and Z = 46.29, Genetic Algorithm is               

X = 35.92 m, Y = 29.55 m, and Z = 10.03 m and in CMA – ES is X = 33.34 m,              

Y = 25.80 m, and Z = 6.61 m in x-y-, and z-directions respectively. 

 

When the results are compared, it is clear that the mean position estimated by 

the CMA - ES algorithm provides more precise estimation of the GPS receiver's 3D 

position than the Kalman Filter, Firefly, and Genetic algorithms.  
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CONCLUSION 
  

The CMA-ES algorithm is implemented on GPS data acquired in real-time 

from low-latitude areas of the Indian subcontinent. The estimated mean position 

errors by using CMA-ES are 33.34 in x - direction, 25.80 in y - direction, and 6.61 m 

in z - direction, and estimated receiver clock bias is 4.93 ns. The position reliability 

is further enhanced by taking into account every single word that was ignored as a 

correctable fault. As a result, CMA-ES is a suitable and better nature-inspired 

algorithm for estimating the location of any Low-latitude areas of the Indian 

subcontinent are home to a GPS receiver. 

 

FUTURE SCOPE 

In India's coastal regions, the application of CMA-ES for GPS receiver 

location estimate has a lot of potential in the future. Due to the existence of various 

challenges, such as structures, mountains, and dense vegetation, coastal locations are 

frequently difficult for GPS signal reception. CMA-ES can be used to optimize the 

position of GPS receivers to minimize the impact of these obstructions and improve 

the accuracy of GPS positioning. Furthermore, CMA-ES can be used to optimize the 

parameters of GPS positioning algorithms to improve their accuracy in the coastal 

region of India. The optimization can be performed by minimizing the difference 

between the estimated and actual positions obtained through ground truth 

measurements. It is important to note the potential of CMA-ES for estimating GPS 

receiver position in coastal areas of India. By adjusting the locations of GPS receivers 

and reference stations as well as the GPS positioning algorithms' parameters, the 

optimization algorithm can be used to increase GPS positioning accuracy. 
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