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ABSTRACT 

Due to urbanization, there is a huge increase in vehicle usage day by day. The present 

automated traffic control systems are based on a fixed time concept, where signal timing is 

allocated equally for all lanes regardless of vehicle density in the lanes. As a result of this traffic 

congestion, a large amount of pollution and heat is generated, which internally affects society 

and the environment. To overcome these issues, we are proposing a model to monitor the 

density of vehicles in each lane using real-time video to allocate the dynamic time for vehicle 

and pedestrian passage. In addition, emergency vehicles can also be identified using this 

method to ensure a quick free passage through emergency lanes. This model uses YOLOv3 

algorithm and Microsoft’s COCO Dataset to identify the vehicle type and density in each lane. 

YOLO is a real-time object recognition system that can recognize multiple objects in a single 

frame. YOLO is based on a single Convolutional Neural Network (CNN). Yolo is a futuristic 

recognizer that outperforms current detectors in terms of accuracy and FPS. Real-time video 

can be analyzed for automatic vehicle detection using OpenCV and Python. OpenCV is a 

library of programming functions mainly aimed at real-time computer vision. The analyzed 

data also helps to minimize the traffic violators and this data is stored in the cloud and can be 

used for future reference to analyze traffic patterns. This model helps us to have an efficient 

and reliable traffic management system. 
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LITERATURE REVIEW 

1. In the past, various methods for calculating traffic density have been used. A traffic 

control system using a surveillance system had been proposed in paper [1], but the 

density has been calculated using images and image processing in which the system has 

its own limitations. This technique requires a lot of time for calculating the traffic 

density. 

2. In paper [2], the model uses Convolutional Neural Networks (CNNs), a type of deep 

learning algorithm, for image recognition and detection. These CNN networks were 

built using two data sets, MNIST and CIFAR-10. After evaluation of the performance, 

the results showed an accuracy of 99.6% but the speed has become a constraint for this 

model which can be overcome by using YOLOv3. 

3. The extension to CNN's object detection algorithm is called YOLOv3. As a result, 

paper [3] provides a full explanation of CNN and deep learning. Artificial neural 

networks (ANNs) with several layers are referred to as deep neural networks. These 

layers have the capacity to manage massive volumes of data. Convolutional neural 

networks (CNNs), a subset of deep neural networks with several layers, have been 

proven to perform exceptionally well in machine learning tasks. This essay also seeks 

to describe and characterize the key components of CNN, how they function, and the 

factors that influence their effectiveness. 

4. The paper [4] represents a co-training-based vehicle detection system for traffic 

monitoring and control. This system employs a Haar feature-based Classifier trained 

using AdaBoost algorithm to detect vehicles in low resolution cameras and scenarios 

where license plates are not visible. Haar feature-based classifier is a method for vehicle 

detection in computer vision. AdaBoost (Adaptive Boosting) is an ensemble machine 

learning algorithm that can be used to classify by combining multiple classifiers to form 

a strong classifier. The main usage of this model is to search for specific vehicles based 

on attributes such as color, time and date, speed, and direction of movement.  

5. Based on the above papers, YOLOv3 was found to be the best algorithm for object 

detection. In paper [5], a lightweight vehicle detection and pedestrian algorithm was 

proposed, which will be helpful in finding the number of vehicles and pedestrians 

present in each lane at a particular point of time. But this algorithm has a limitation that 

it can only process images and these images are processed on a timely basis. Due to this 
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gap in time, the signal time calculation would be delayed which further causes issues 

in signal timings. 

6. As mentioned earlier, the time calculation would be delayed if the algorithm proposed 

in paper [5], in paper [6], an optimization algorithm has been proposed. In this model, the 

YOLOv3 algorithm is implemented with the COCO dataset. This model takes input 

from the user, and with the help of the YOLOv3 algorithm, the model predicts the types 

of objects present in the given image and the accuracy gained by this model is 93%. 

7. The paper [7] is about Microsoft's COCO Dataset. COCO stands for Common Objects 

in Context. As previously mentioned in paper [6], the YOLOv3 algorithm with the 

COCO data set has gained an accuracy of 93%. COCO Dataset consists of 91 object 

types, also called classes. These classes contain common objects such as vehicles, 

animals, food items etc. And in these classes, there are around 328,000 images, which 

are helpful in classifying multiple objects present in a single image. This data set 

consists of different types of vehicles such as bikes, cars, trucks, trains etc. and different 

types of animals such as dogs, cats, horses etc. Thus, any object detection algorithm 

that uses COCO Dataset will be able to categorize multiple objects though they are 

present in a single image.  

8. The YOLO algorithm can be studied on the website mentioned in [8]. This website is 

made by the creator of the YOLO algorithm, and it also consists of YOLO configuration 

files and weight files which are prerequisites to implement this algorithm. This website 

also consists of comparisons of the YOLOv3 algorithm with other algorithms. 
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CHAPTER 1: INTRODUCTION 

1.1 Project Objective 

The objective of this project is to create a system that uses the YOLOv3 object 

identification algorithm to automatically detect and analyze traffic flow in real-time. The 

system aims to provide real-time traffic management insights to traffic authorities to help them 

make better decisions related to traffic flow and congestion. By improving traffic flow, 

reducing congestion, and minimizing delays, this system aims to enhance the overall traffic 

management and transportation experience for drivers and passengers alike. 

 

1.2 Project Outline 

Traffic congestion is a growing problem in urban areas around the world, leading to 

increased travel times, reduced productivity, and increased emissions. One approach to 

addressing this problem is using real-time traffic management system (RTTMS), which can 

monitor traffic conditions in near real-time and adjust traffic signal timings, routing, and other 

parameters to improve traffic flow. There are numerous image processing and video processing 

algorithms that can be used in the real world as technology advances every day. One such 

technique is the well-liked object identification algorithm YOLOv3, which is renowned for its 

speed and accuracy in real-time. This document provides a summary of the most recent 

developments in RTTMS, including the data sources that are used to collect traffic data, the 

algorithms and models used to analyze and interpret this data, and the strategies and tactics 

used to control traffic flow. The system will use live video feeds from traffic cameras and apply 

the YOLOv3 algorithm to detect and classify different types of vehicles and their movements, 

including speed, direction, and density. The output of the system will be visualized using 

interactive dashboards and reports that provide real-time traffic management insights, such as 

the current traffic situation, congestion areas, and recommended traffic diversion routes. 

 

  



4 

 

CHAPTER 2: CONVOLUTION NEURAL NETWORKS 

2.1 Introduction 

Artificial neural networks known as convolutional neural networks (CNNs) are 

employed in the categorization and object detection of images. They have shown to be very 

successful in many computer vision applications and are inspired by the structure and operation 

of the visual cortex in the brain. 

 

A CNN is fundamentally made up of numerous layers of connected nodes that process 

and interpret input data. When it comes to image classification, an image is the input, and the 

output is a label or group of labels that describe the contents of the image. Based on the 

convolutional neural network theory, it applies filters to the input image to extract meaningful 

information. Additional layers in the network subsequently process these features to classify 

the input image. CNNs are now often employed for a wide range of tasks, such as image and 

video identification, self-driving cars, medical diagnosis, and natural language processing. As 

a result of their great accuracy and effectiveness, they are a crucial tool for deep learning 

practitioners. 

 

2.2 Layers inside CNN 

Convolutional layer is the first layer of a CNN, where a series of filters (also known as 

kernels) are applied to the input image. Each filter slides across the image, producing a 

transformed version of the input based on the values of the pixels it overlaps. This process is 

referred to as convolution. The transformed representations produced by the filters are then 

passed through activation functions to produce a set of feature maps. 

 

The feature mappings from the preceding layer are subjected to additional filtering in 

subsequent convolutional layers, which results in increasingly more abstract representations of 

the image. The spatial dimensions of the feature maps are subsequently decreased by feeding 

these altered representations into pooling layers. By making the network invariant to minor 

translations or distortions in the input image, this improves the resilience of the CNN. 
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The output from the previous layers is merged and processed in fully connected layers, 

which is where the final classification or detection result is produced, after the modified 

representations have been processed via numerous layers of convolution and pooling. 

 

The capacity of CNNs to learn features from the input data is a significant feature. 

Based on the difference between the network's expected output and the true label during 

training, the weights of the filters and other network parameters are adjusted. The network 

gains the ability to identify and extract crucial information from the input photos over time, 

which it utilises to generate precise predictions. 

 

Due to its capacity to learn features directly from the input data, handle massive volumes 

of data, and excel at tasks like object detection and image classification, CNNs have become 

the state-of-the-art in many computer vision applications. Furthermore, because convolution 

and pooling layers are used, CNNs are extremely parallelizable and may be used on GPUs for 

effective inference and training. 

 

2.2.1 Convolution Layer 

The convolution layer is the core element of the CNN. It bears most of the network's 

computational burden. 

 

The kernel—a group of learnable parameters—and the limited region of the receptive field 

are two matrices that are combined in this layer to form a dot product. The kernel is deeper yet 

smaller in space than an image. This means that if an image has three (RGB) channels, the 

kernel height and width will be spatially tiny, but the depth will increase to include all three 

channels. 

 

Figure 2.2.1: Illustration of Convolution Operation 
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During the forward pass, the kernel traverses the picture's height and width, generating 

an image of that receptive area. Therefore, an activation map—a two-dimensional 

representation of the picture—is produced, displaying the kernel's reaction at each spot in the 

image. The sliding size of the kernel is referred to as a stride. 

 

If we have an input of size W x W x D, a Dout number of kernels with a spatial dimension of F, 

a stride S, and an amount of padding P, we can determine the output volume using the formula 

below: 

𝑊𝑜𝑢𝑡 =
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 

 

Therefore, an output volume with the dimensions Wout x Wout x Dout will be produced. 

 

2.2.1.1 Motivation behind Convolution 

Convolution makes advantage of the three essential concepts of sparse interaction, 

parameter sharing, and equivariant representation that inspired researchers in computer vision. 

 

In simple neural network layers, matrix multiplication is used to explain how an input unit 

interacts with an output unit using a matrix of parameters. This suggests that all input and 

output devices are in communication with one another. Yet, there is little interaction between 

convolution neural networks. This is accomplished by making the kernel smaller than the input, 

so that, even when an image has millions or thousands of pixels, we are able to find important 

information by processing it with the kernel that is just tens or hundreds of pixels in size. This 

suggests that we need to store fewer parameters, which reduces the model's memory need and 

increases the statistical power of the model. 

 

If a characteristic is relevant at another spatial position, it should be advantageous to 

calculate it at point (x1, y1). (x2, y2). It implies that neurons must use the same set of weights 

whether creating an activation map for a single two-dimensional slice or for a single activation 

map. Unlike to convolution networks, which employ shared parameters so that weights given 

to one input are also applied to other inputs and outputs, conventional neural networks only 

ever use a single member of the weight matrix. Due to parameter sharing, the layers of a 

convolution neural network will have the property of equivariance to translation. It claims that 

if we make specific changes to the input, the output will do the same. 
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Due to parameter sharing, the layers of a convolution neural network will have the property 

of equivariance to translation. It states that the output will change in accordance with how the 

input is changed. 

 

2.2.2 Pooling Layer 

By calculating an aggregate statistic from the surrounding outputs, the pooling layer serves 

as a stand-in for the network's output at specific locations. The representation's spatial 

dimension is lowered as a result, reducing the need for computation and weights. The pooling 

process is individually applied to each slice of the representation. 

 

The L2 norm of the rectangular neighbourhood, the average of the rectangular 

neighbourhood, and one of the pooling functions are all influenced by the separation from the 

centre pixel. Nevertheless, the most used method is max pooling, which presents the most 

neighbourhood output. 

 

 

Figure 2.2.2: Pooling Operation 

If we have a pooling kernel with a spatial dimension of F, an activation map with a size of W 

x W x D, and a stride of S, we can use the following formula to determine the size of the 

output volume: 

 

𝑊𝑜𝑢𝑡 =
𝑊 − 𝐹

𝑆
+ 1 
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Wout x Wout x D will be the output volume as a result. 

An object can always be recognised regardless of where it is in the screen because pooling 

always offers some translation invariance. 

 

2.2.3 Fully Connected Layer 

Every neuron in this layer is completely linked to every other neuron in the layer before 

and after, just as in a traditional FCNN. Because of this, the calculation may be performed as 

usual utilising a matrix multiplication and bias effect. 

 

The FC layer maps the representation between the input and the output. In a Convolutional 

Neural Network (CNN), a fully connected layer connects every neuron in one layer to every 

neuron in every other layer. These layers are often encountered after the application of multiple 

convolutional and pooling layers, towards the conclusion of the network. The convolutional 

layers' retrieved features are used by the fully connected layer to do classification. A weight is 

assigned to each piece of information that each neuron in the fully connected layer gets from 

every neuron in the layer below. These weights are altered throughout training to lessen the 

discrepancy in accuracy between the predicted and actual outputs. Generally, a probability 

distribution across all possible classes is provided by applying a SoftMax activation function 

to the output of the fully linked layer. 

 

2.2.4 Non-Linearity Layers 

Non-linearity layers are frequently included right after the convolutional layer to add non-

linearity to the activation map because convolution is a linear process and images are anything 

but linear. 

 

Non-linear operations come in a variety of forms, the most well-known being: 

2.2.4.1 Sigmoid Nonlinearity 

The sigmoid nonlinearity's mathematical counterpart: 

𝜎(κ) =
1

1 + 𝑒−κ
 

The 0–1 range is "squished" to fit a real-valued number. 

The gradient of a sigmoid nearly zeroes out when the activation takes place at either tail, which 

is a very unfavourable sigmoid property. The gradient will be effectively "killed" via 

backpropagation if the local gradient becomes too modest. The output of the sigmoid will either 
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be all positives or all negatives if the input to the neuron is always positive. This will cause a 

zigzag dynamic of gradient updates for weight.  

 

2.2.4.2 Tanh Nonlinearity 

A real-valued number is condensed by Tanh to the range [-1, 1]. The activation saturates 

like the sigmoid, however its output is zero-centered unlike the sigmoid neurons. 

 

2.2.4.3 ReLU Nonlinearity 

The Rectified Linear Unit (ReLU) has become quite popular recently. It does the 

calculation for the function ƒ(κ)=max (0, κ). In other words, at 0 threshold, the activation just 

exists. 

 

ReLU is more trustworthy than sigmoid and tanh and speeds up convergence by a factor 

of six. 

 

However, ReLU could be sensitive during training, which is a disadvantage. Strong 

gradients that stop the neuron from ever updating further may update it. But we can make this 

work by selecting a suitable learning rate. 

 

2.3 Designing a Convolutional Neural Network 

Designing a Convolutional Neural Network (CNN) involves several steps, including: 

1. Define the problem: Determine the problem you are trying to solve and identify the 

type of data you will be working with (e.g., images, audio, text). 

2. Gather and pre-process the data: Collect enough data and pre-process it by scaling, 

normalizing, and augmenting it as necessary. 

3. Choose a CNN architecture: Select an appropriate CNN architecture based on the 

problem and data type. Common architectures include VGG, ResNet, and Inception. 

4. Set up the network: Select the quantity of layers, the size of the filters, and the strides 

for each layer. Choose whether ReLU or sigmoid will be used as the activation 

functions. 
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5. Train the network: Train the network by supplying it with batches of previously 

processed data and modifying the weights and biases of the neurons to reduce the loss 

function. Select a suitable optimizer, such as Stochastic Gradient Descent or Adam. 

6. Assess the model: Check the trained model's accuracy on a validation set and make any 

necessary hyperparameter adjustments. 

7. Apply the model: The model can be applied to forecast new data once it has been trained 

and assessed. 

Each of these factors must be carefully taken into account while designing a CNN, and the 

fundamental ideas guiding neural networks and machine learning must also be well grasped. 

Example: We can build a convolutional neural network using Fashion-MNIST, a dataset of 

Zalando article photographs with a training set of 60,000 samples and a test set of 10,000 cases. 

Each picture consists of a 28x28 grayscale graphic, and a label selected from one of 10 classes. 

The following is our convolutional neural network's architecture: 

      [INPUT] 

→ [CONV 1] → [BATCH NORM] → [ReLU] → [POOL 1] 

→ [CONV 2] → [BATCH NORM] → [ReLU] → [POOL 2] 

→ [FC LAYER] → [RESULT] 

With a stride size of 1 and padding of 2, we will use a spatial kernel that is 5 x 5 in size. For 

both pooling layers, we'll use the maximum pool operation with kernel size 2, stride 2, and no 

padding. 

 

Calculations: 

CONV 1 

Input Size (W1 × H1 × D1) = 28 × 28 × 1 

• Requires four hyperparameter: 

• Number of kernels, k = 16 

• Spatial extend of each one, F = 5 

• Stride Size, S = 1 

• Amount of zero padding, P = 2 

• Outputting volume of W2 × H2 × D2 

• W2 = (28-5+2(2))/ 1+1 = 28 

• H2 = (28-5+2 (2))/ 1+1 = 28 
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• D2 = k 

Output of Conv 1 (W2 × H2 × D2) = 28 × 28 × 16 

 

POOL 1 

Input Size (W2 × H2 × D2) = 28 × 28 × 16 

• Requires two hyperparameter: 

• Spatial extend of each one, F = 2 

• Stride Size, S = 2 

• Outputting volume of W3 × H3 × D2 

• W3 = (28-2)/ 1+1 = 14 

• H3 = (28-2)/ 1+1 = 14 

Output of Pool 1 (W3 × H3 × D2) = 14 × 14 × 16 

 

CONV 2 

Input Size (W3 × H3 × D2) = 14 × 14 × 16 

• Requires four hyperparameter: 

• Number of kernels, k = 32 

• Spatial extend of each one, F = 5 

• Stride Size, S = 1 

• Amount of zero padding, P = 2 

• Outputting volume of W4 × H4 × D3 

• W4 = (14-5+2(2))/ 1+1 = 14 

• H4 = (14-5+2 (2))/ 1+1 = 14 

• D3 = k 

Output of Conv 2 (W4 × H4 × D3) = 14 × 14 × 32 

 

POOL 2 

Input Size (W4 × H4 × D3) = 14 × 14 × 32 

• Requires two hyperparameter: 

• Spatial extend of each one, F = 2 
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• Stride Size, S = 2 

• Outputting volume of W5 × H5 × D3 

• W5 = (14-2)/ 2+1 = 7 

• H5 = (14-2)/ 2+1 = 7 

Output of Pool 2 (W5 × H5 × D3) = 7 × 7 × 32 

 

FC Layer 

Input Size (W5 × H5 × D3) = 7 × 7 × 32 

Output Size (Number of Classes) = 10 

 

Code snippet for defining the convolution network: 

class convnet1(nn. Module): 

   def __init__(self): 

       super(convnet1, self). __init__() 

       # Constraints for layer 1 

       self. conv1 =  nn. Conv2d(in_channels = 1, out_channels = 16, kernel_size

= 5, stride =  1, padding = 2) 

       self. batch1 =  nn. BatchNorm2d(16) 

       self. relu1 =  nn. ReLU() 

       self. pool1 =  nn. MaxPool2d(kernel_size

= 2) #default stride is equivalent to the kernel_size 

       # Constraints for layer 2 

       self. conv2 =  nn. Conv2d(in_channels = 16, out_channels = 32, kernel_size

= 5, stride =  1, padding = 2) 

       self. batch2 =  nn. BatchNorm2d(32) 

       self. relu2 =  nn. ReLU() 

       self. pool2 =  nn. MaxPool2d(kernel_size = 2) 

       # Defining the Linear layer 

       self. fc =  nn. Linear(32 ∗ 7 ∗ 7, 10) 

   # defining the network flow 

   def forward(self, x): 

       # Conv 1 
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       out =  self. conv1(x) 

       out =  self. batch1(out) 

       out =  self. relu1(out) 

       # Max Pool 1 

       out =  self. pool1(out) 

       # Conv 2 

       out =  self. conv2(out) 

       out =  self. batch2(out) 

       out =  self. relu2(out) 

       # Max Pool 2 

       out =  self. pool2(out) 

       out =  out. view(out. size(0), −1) 

       # Linear Layer 

       out =  self. fc(out) 

       return out 

 

The network additionally uses batch normalisation, which expressly mandates that the network 

adopt a unit Gaussian distribution. This avoids improper weight matrix initialization. Cross-

entropy has been used as the loss function during training, along with the Adam Optimizer and 

a learning rate of 0.001. For the test dataset, the model is 90% accurate after training. 

 

2.4 Applications of CNN 

Convolutional neural networks (CNNs) are frequently employed in many different 

applications, such as: 

1. Image recognition: CNNs are important in applications like self-driving cars, security 

systems, and medical diagnosis because they can precisely recognise objects, people, 

and animals in photographs and videos. 

2. Natural language processing: CNNs can be used to analyse and process text data, 

making them useful in applications such as sentiment analysis, language translation, 

and chatbots. 

3. Speech recognition: CNNs can be used to analyse and classify speech signals, making 

them useful in applications such as voice assistants and speech-to-text transcription. 



14 

 

4. Recommendation systems: CNNs are valuable in applications like product suggestions 

and personalised marketing because they can be used to forecast customer preferences 

based on prior activity. 

5. Robotics: CNNs can be used to process sensor data and make decisions for autonomous 

robots, making them useful in applications such as manufacturing, agriculture, and 

space exploration. 

6. Medical imaging: CNNs can be used to analyse medical images and detect 

abnormalities, making them useful in applications such as cancer diagnosis and 

radiology. 

Overall, CNNs have demonstrated outstanding performance in a variety of applications, 

making them a crucial tool for academics, engineers, and developers in a variety of industries. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction about YOLOv3 Algorithm 

The third iteration of the well-known object detection system YOLO (You Only Look 

Once), sometimes known as YOLOv3, is called YOLOv3. Because it is a single shot multi-

box detection system, it can recognise several objects in an image during a single network pass. 

This makes YOLOv3 extremely efficient since, unlike previous object detection algorithms, it 

does not need to scan the image more than once. 

 

The input image is divided into a grid of cells by YOLOv3, and each cell oversees 

determining the existence and placement of items in its region. To identify the existence and 

placement of objects in the image, the network generates a set of bounding boxes for each cell 

along with the related class probabilities. YOLOv3 gains the ability to forecast the position and 

dimensions of the bounding boxes as well as the class probabilities for each object in the image 

during the training phase. 

 

The use of anchor boxes in YOLOv3 is one of its primary characteristics. A collection 

of bounding boxes called "anchor boxes" is utilised to increase the accuracy of the network's 

predictions. Each anchor box is given a cell in the grid by YOLOv3, which modifies the form 

and size of each box during training to better match the location and size of the objects in the 

image. 

 

In addition to these enhancements, YOLOv3 additionally makes use of residual 

connections and up sampling layers to boost prediction accuracy over earlier iterations. 

Additionally, YOLOv3 makes use of anchor boxes with various aspect ratios to manage objects 

of various sizes and forms. 

 

One of the fastest and most reliable object detection algorithms currently in use is 

YOLOv3. It can operate in real-time on a GPU and can recognise a variety of things, such as 

people, cars, animals, and more. Furthermore, it is very scalable since the network can be 

trained on a big dataset to increase accuracy or fine-tuned on a smaller dataset to recognise 

certain items. 
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YOLOv3 is a strong and effective object recognition technique that has gained 

widespread acceptance in several computer vision applications. It is an appealing option for 

many use cases due to its quick, real-time performance, excellent precision, and capacity to 

handle objects of various shapes and sizes. 

 

3.2 YOLOv3 Architecture 

 

3.2.1 Description of Architecture 

3.2.1.1 YOLOv3 object detection procedures 

• The input is a collection of form images (m, 416, 416, 3). 

• This image is sent to a convolutional neural network by YOLO v3. (CNN). 

• The output volume obtained by flattening the final two dimensions of the output is (19, 

19, 425): 

• Here, each cell of a 19 x 19 grid returns 425 numbers. 

• 425 = 5 * 85, where 5 is the number of anchor boxes per grid. 

• 85 = 5 + 80, where 5 is (pc, bx, by, bh, and bw) and 80 is the total number of 

classes we're looking to find. 

• The output provides a list of bounding boxes and any classes that were found. Six 

numerals are used as symbols for each bounding box (pc, bx, by, bh, dw, and c). Each 

bounding box in an 80-dimensional vector of c is represented by 85 values. 

• To prevent choosing overlapping boxes, we next do the IoU (Intersection over Union) 

and Non-Max Suppression. 

 

3.2.1.2 Regarding the Architecture 

• A Darknet derivative called YOLOv3 makes use of an Imagenet-trained 53-layer 

network. 

• For the purpose of detection, 53 more layers are added, giving YOLOv3 a 106-layer, 

fully convolutional underlying architecture. 

• Applying 1×1 detection kernels to feature maps of three different sizes at three different 

locations across the network is how YOLO v3's detection procedure is carried out. 

• Dimensions of the detecting kernel are 1 × 1 × (B × (5 + C)). Thus, "5" denotes the four 

bounding box characteristics and one object confidence, and "B" denotes the maximum 
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number of bounding boxes that a feature map cell is capable of predicting. There are 

"C" number of classes. 

• YOLOv3 employs logistic regression to estimate object confidence and class 

predictions and binary cross-entropy to calculate the classification loss for each label. 

3.2.1.3 Hyper-parameters utilised 

• class threshold - Determines the threshold for the projected item's likelihood. 

• Non-Max suppression Threshold: This threshold prevents the same object from being 

recognised more than once in a picture. To do this, the highest probability boxes are 

chosen, while the neighbouring, lower probability boxes are suppressed. (Below the 

established threshold). 

• Input image size, input height, and input shape. 

 

3.2.2 Architecture Diagram of YOLOv3 

 

Figure 3.2.1: Architecture Diagram of YOLOv3 

 

3.2.3 Details of Layers 

When only convolutional layers are used, YOLO is a fully convolutional network (FCN). 

A more sophisticated feature extractor by the name of Darknet-53 is used in YOLOv3. 
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3.2.3.1 Convolution Layers in YOLOv3 

Like other convolutional neural networks, YOLOv3's architecture is mostly composed 

of convolution layers. In order to build representations that are helpful for the job of object 

detection, convolutional layers are employed to extract features from the input picture. 

 

The input layer, the backbone network, and the detection layers are the three primary 

components of the YOLOv3 deep neural network architecture in which the convolutional 

layers are placed. The backbone network oversees extracting features from the pre-processed 

picture after the input layer pre-processes the raw image that it gets as input. 

 

The YOLOv3 backbone network is made up of several convolutional layers with 

various filter sizes and strides, followed by residual connections that enhance gradient flow 

and aid in preventing disappearing gradients during training. Darknet-53, a deep neural 

network with 53 layers that serves as the feature extractor, is a component of the backbone 

network. 

 

The detection layers in YOLOv3 forecast the bounding boxes and class probabilities 

for each item in the picture. These layers use the feature map generated by the backbone 

network as input and use a series of convolutional layers and up sampling layers to build the 

final output. 

 

Overall, the convolution layers of YOLOv3 are crucial to the network's capacity to 

recognise objects quickly and accurately. 

 

3.2.3.2 Darknet – 53 in YOLOv3 

The YOLOv3 object identification technique is built on the convolutional neural 

network architecture known as Darknet-53. A deep neural network with 53 layers called 

Darknet-53 makes advantage of residual connections to enhance gradient flow and stop 

gradients from disappearing during training. 

 

Darknet-53 was developed by the creator of YOLO, Joseph Redmon, as an alternative 

to the widely used ResNet architecture. It was designed specifically for object detection tasks 

and has shown superior performance on image classification benchmarks such as ImageNet. 
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In YOLOv3, the input picture is processed by Darknet-53 to create a feature map, which 

is then applied to the input image for object detection. Additional convolutional layers are used 

to the feature map during processing in order to forecast bounding boxes and class probabilities 

for each item in the picture. 

 

Overall, Darknet-53 is an important component of YOLOv3 and contributes to its speed 

and accuracy in real-time object detection. 

 

3.2.3.3 Different Layers inside YOLOv3 

Code for Layer 1 to 53 in Tensorflow: Consider res_block() method for below code 

def res_block(inputs, filters):   

    shortcut =  inputs   

    net =  conv2d(inputs, filters ∗  1, 1)   

    net =  conv2d(net, filters ∗  2, 3)   

    net =  net +  shortcut   

    return net 

#First two conv2d layers with 32 and 64 filters 

net =  conv2d(inputs, 32, 3, strides = 1) 

net =  conv2d(net, 64, 3, strides = 2) 

res_block ∗  1 

net =  res_block(net, 32) 

# Convolutional block with 128 filters 

net =  conv2d(net, 128, 3, strides = 2) 

res_block ∗  2 

for i in range(2): 

        net =  res_block(net, 64) 

# Convolutional layer with 256 filters 

net =  conv2d(net, 256, 3, strides = 2) 

res_block ∗  8 

for i in range(8): 

    net =  res_block(net, 128) 

# Convolutional layer with 512 filters 

route_1 =  net 
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net =  conv2d(net, 512, 3, strides = 2) 

res_block ∗  8 

for i in range(8): 

    net =  res_block(net, 256) 

# Convolutional layer with 1024 filters 

route_2 =  net 

net =  conv2d(net, 1024, 3, strides = 2) 

res_block ∗  4 

for i in range(4): 

    net =  res_block(net, 512) 

route_3 =  net 

 

3.2.4 Input Details for Model Inference 

i. Input Pre-processing: Before being input into our algorithm, the images must be scaled 

to 416 × 416 pixels. Providing the dimensions while the Python code is running is one 

option. 

ii. Input Dimensions: While the user may choose to select a different size, the model 

anticipates inputs to be coloured pictures with square shapes measuring 416 × 416 

pixels. 

 

3.2.5 Details on Model Inference program and output 

3.2.5.1 The output of the model 

• The outcome gives a list of bounding boxes and any discovered classes. 

• Six integers are used to symbolise each bounding box (pc, bx, by, bh, dw, and c). The 

number of classes we want to forecast is represented by the 80-dimensional vector c, 

and each bounding box is represented by 85 values. 

 

3.2.5.2 Post-processing Results 

• The output of the inference software is a collection of numpy arrays that are provided 

with their shapes. Although being encoded, these arrays already know what their 

bounding boxes and class labels will be. 
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• The candidate bounding boxes and class predictions are then decoded for each of the 

numpy arrays. Bounding boxes with class probabilities below the threshold value of 0.3 

and that do not clearly define an object will be disregarded. 

• In this case, a picture can take a maximum of 200 bounding boxes into account. 

• The bounding box coordinates have been translated using the correct_yolo_boxes() 

function so that the original picture may be plotted and rendered. 

• The overlap will once again be assessed using the non-max suppression threshold = 

0.45 in order to exclude candidate bounding boxes that could be referring to the same 

item. 

• The bounding boxes' coordinates also need to be scaled back to match the original 

picture, and each one must have the title and scores displayed on top of it. 

• Before the bounding boxes and recognised classes in our output image are obtained, all 

these post-processing procedures must be completed. 

3.2.5.3 Model output from the inference program 

 

Figure 3.2.2: Object Detection Result using YOLOv3 Example 1 



22 

 

 

Figure 3.2.3: Object Detection Result using YOLOv3 Example 2 

 

Figure 3.2.4: Object Detection Result using YOLOv3 Example 3 

 

3.2.6 YOLOv3's Speed and Accuracy 

• Model Speed (in FPS) - It processes pictures at 30 FPS on a Pascal Titan X. 

• Model Accuracy (On Testing dataset) - The model's accuracy (based on testing dataset) 

is 87.54% (Mean Average Precision). 
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CHAPTER 4: RESULTS 

4.1 Summary of Code 

This is a YOLO (You Only Look Once) deep neural network implementation of object 

detection. When a video file is supplied, the program analyses it frame by frame, using the 

YOLO pre-trained model to identify items in each frame. The program makes use of the 

argparse module to parse command-line parameters and the OpenCV library for image 

processing and manipulation. During the processing of the video frames, a progress bar is 

provided by the tqdm module. 

 

The COCO (Common items in Context) dataset, which contains 80 classes of items, is 

used to train the YOLO model that is employed in this program. To take use of the computing 

capability of NVIDIA GPUs, the program loads the YOLO model configuration and weights 

from disc and specifies CUDA as the execution backend and target. 

 

After reading each frame of the video, the program runs each frame through the YOLO 

model to produce bounding boxes and class probabilities for any objects that were recognised. 

The remaining bounding boxes are then drawn on the frame along with the class name and 

probability after the program uses non-maxima suppression to eliminate duplicate bounding 

boxes for the same item. Additionally, the program stores the edited video on disc. 

 

Additionally, the program creates two log files: one for things that enter the frame and 

another for those that exit the frame. The logs are produced depending on the number of objects 

in each frame and the direction in which they moved relative to the previous frame. To 

guarantee that the logs are correct, the program records the ID of each object. 
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4.2 Model creation and Training 

 

 
 

4.3 Execution of Code 

4.3.1 Procedure to run the software 

1. Create a folder with all the required libraries, tools present in that folder and define the 

paths in the program wherever necessary. 

2. Save the file with .py extension and Open Command prompt or Windows Terminal 

3. The Command Prompt or Windows terminal should be in the folder where all the files 

have been stored. 

4. Next, type the following command at the command prompt or terminal: 

Python file_name.py -i input_file_location -o output_file_location 

5. In this case, file_name denotes the name of the Python code file, input_file_location 

denotes the location of the video file to be processed, and output_file_location denotes 

the location of the processed video file. 

6. The tqdm module will be used in the terminal to display the timer once the video 

processing is complete and to indicate the progress of the video processing. The 

pedestrian time and the green signal time on this timer both vary automatically.  
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4.4 Obtained Results 

 
Figure 4.4.1: Output of Video 1 

 

 

Figure 4.4.2: Output of Video 2 
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Figure 4.4.3: Output in Windows Terminal at the time of Video Processing 

 

 

Figure 4.4.4: Output in Windows Terminal after Video Processing  
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CHAPTER 5: TOOLS USED 

5.1 Python 

5.1.1 Introduction 

Guido van Rossum created Python, an interpreted, object-oriented, high-level, 

dynamically semantic programming language. The product was launched in 1991. The word 

"Python" is designed to be both straightforward and amusing, and it is a reference to the British 

comedy group Monty Python. As it handles the bulk of the complexity for the user, Python has 

a reputation for being a beginner-friendly language. It has replaced Java as the most popular 

beginning language and allows newcomers to concentrate on really understanding 

programming concepts rather than minute details. 

 

Python is renowned for its dynamic typing, dynamic binding, and high-level built-in 

data structures. Moreover, it is often used as a scripting or glue language to link already existing 

components as well as for quick application creation. Python is also used for system 

programming, software development, arithmetic, and server-side web development. Python's 

easy-to-learn syntax and focus on readability reduce the expenses associated with maintaining 

programs. Moreover, Python's support for modules and packages streamlines the process of 

building modular applications and reusing code. Due to Python's status as an open-source 

community language, a sizable number of independent programmers are continually 

developing libraries and features for it. A sizable community of independent programmers are 

continually developing libraries and features for Python as a result of its open-source nature. 

 

5.1.2 Requirements 

The requirements for Python vary depending on the specific use case and environment, but 

some of the general requirements for using Python are: 

1. Python interpreter: Having the Python interpreter installed on the system is a must for 

using Python. The application that runs Python code is known as the Python interpreter. 

From the official Python website, Python may be downloaded, and installation is 

usually simple. 

2. Text editor or IDE: To create and modify Python code, you need a text editor or 

integrated development environment (IDE). There are several options available, 
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including as paid and free software like Visual Studio Code, PyCharm, Sublime Text, 

Notepad++, and Atom. 

3. Libraries and modules: Python offer a sizable standard library that contains several 

modules and routines for carrying out frequent operations. To increase Python's 

capability, nevertheless, certain applications might need extra libraries or modules. 

NumPy, Pandas, TensorFlow, and Pygame are a few well-known Python libraries. 

4. Operating system: Python is compatible with Windows, Linux, and macOS, among 

other operating systems. Depending on the version of Python and the individual 

libraries or modules being used, the operating system requirements for Python may 

change. 

5. Hardware requirements: The hardware requirements for Python are relatively low, and 

Python can run on most modern computers. However, some libraries or modules may 

have specific hardware requirements, such as a certain amount of RAM or processing 

power. 

In summary, the basic requirements for using Python include a Python interpreter, a text editor 

or IDE, and any necessary libraries or modules. Additionally, the specific operating system and 

hardware requirements may vary depending on the project and the specific tools being used. 

 

5.1.3 Features of Python 

Python's features include: 

• Easy-to-learn − Given that it has a clear syntax, few keywords, and a simple 

organizational structure, Python is simple to learn. The pupil may swiftly pick up the 

language thanks to this. 

• Simple to read: Since Python code is more clearly defined and visible, it is simpler to 

comprehend. 

• Simple to maintain – Python's source code is relatively easy to keep up with. 

• A big standard library − The bulk of the Python library runs on UNIX, Windows, and 

Macintosh and is cross-platform compatible. 

• Interactive mode − Python has an interactive mode that makes it possible to test and 

debug code snippets while they are being performed. 

• Portability – Python offers the same user interface on all hardware platforms and is very 

portable. 
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• Extendable − The Python interpreter can take low-level modules, making it extensible. 

With the help of these modules, programmers may improve or customize their tools to 

make them more helpful. 

• Databases − Python provides interfaces to all important commercial databases. 

• GUI Programming − It is simpler to develop and adapt GUI programs to various 

platforms thanks to Python's support for system calls, libraries, and Windows-based 

operating systems like Windows MFC, Macintosh, and the Unix X Window system. 

• Scalable − Python is more structured and supportive of larger projects than shell 

programming, making it more scalable. 

 

5.1.4 Setting Up Python 

Setting up Python involves a series of steps that will enable a user to run Python code and 

applications. Here are the general steps involved in setting up Python: 

1. Download Python: Downloading the Python installation package from the official 

Python website is the first step. Depending on their operating system and architecture, 

the user should select the suitable version of Python. 

2. Install Python: The user should launch the installer after downloading the Python 

installation package, then follow the on-screen instructions to finish the installation. 

Python will by default be set up in the "Program Files" directory on Windows, or in the 

"/usr/local/bin" directory on macOS or Linux. 

3. Verify the installation: The user should start the Python interpreter at a command 

prompt or terminal window after installing Python to make sure it was installed 

correctly. The user should see the Python version number and a ">>>" prompt if Python 

has been installed properly. 

4. Install a code editor: Any text editor may be used to create Python code, although it's 

advised to choose one that has debugging tools, syntax highlighting, and code 

completion. Some well-liked choices are Atom, PyCharm, Visual Studio Code, and 

PyCharm. 

5. Install Python packages: With its extensive library of packages and modules, Python 

may be used for a wide range of applications. The pip package manager, which is pre-

installed with Python 2.7.9+ and Python 3.4+, allows the user to install Python 

packages. The user should launch a command window or terminal window and run "pip 

install package-name>" to install a package. 
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By completing these steps, the user should be able to start writing and running Python code on 

their computer. They can test their setup by creating a simple "Hello, World!" program and 

running it in their code editor or Python interpreter. 

 

5.1.5 Conditional Statements in Python 

Python's conditional statements let programmers run several sets of code based on whether 

a given condition is true or false. The "if" statement and the "if-else" statement are the two 

primary categories of conditional statements in Python. 

 

5.1.5.1 If statement 

A piece of code is only run using the "if" statement if a certain condition is met. The "if" 

statement's fundamental grammar is seen here: 

if condition: 

statement1 

statement2 

... 

A Boolean expression that is evaluated to true or false in this syntax is referred to as the 

"condition." The indented chunk of code below "condition" is run if "condition" is true. The 

code block is skipped if "condition" returns false. 

 

5.1.5.2 If - else statement 

When using an “if-else" statement, a block of code is executed once if a condition is true and 

once if it is false. Here is the "if-else" statement's fundamental syntax: 

if condition: 

statement1 

statement2 

... 

else: 

statement3 

statement4 

... 
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In this syntax, the block of code following the "if" statement is run and the block of code 

following the "else" statement is skipped if the "condition" is true. The block of code beneath 

the "if" statement is skipped if the "condition" is false, and the block of code under the "else" 

statement is carried out instead. 

5.1.5.3 Nested “if” statement 

Multiple conditions can be tested using nested "if" expressions. An "if" statement is nestled 

inside another "if" statement in this instance. A sample of nested "if" statements is shown 

below: 

if condition1: 

statement1 

statement2 

... 

if condition2: 

statement3 

statement4 

... 

else: 

statement5 

statement6 

... 

else: 

statement7 

statement8 

... 

 

In this format, the code block after the "if" statement is run if "condition1" is true. The code 

block after the nested "if" statement is performed if "condition2" is also true. The code block 

after the nested "else" expression is run if "condition2" is false. The code block after the "else" 

expression is performed if "condition1" is false. 

 

5.1.5.4 If - elif statement 

Another conditional statement in Python that enables the programmer to check many 

conditions in a single block of code is "elif" (short for "else if"). In order to build a branching 
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structure in the code, the "elif" statement is combined with the "if" statement and the "else" 

statement. 

The basic syntax of the "elif" statement is as follows: 

if condition1: 

statement1 

elif condition2: 

statement2 

elif condition3: 

statement3 

else: 

statementN 

If "condition1" is true, the code block following the "if" statement in this syntax is run. The 

"elif" statement is assessed if "condition1" is false. The code block in the "elif" expression is 

run if "condition2" is true. The subsequent "elif" sentence is evaluated if "condition2" is false, 

and so on. The "else" statement's code block is run if none of the criteria are true. 

 

5.1.6 Loops in Python 

Loops are used in Python to continually run a section of code. In Python, there are two different 

forms of loops: "for" loops and "while" loops. 

 

5.1.6.1 For Loops 

For loops are used to repeatedly iterate over any iterable object or sequence (such as a list, 

tuple, or string). The following is the fundamental syntax for a for loop in Python: 

for variable in sequence: 

statement(s) 

The iteration variable that receives the values of each element in the sequence or iterable object 

is referred to in this syntax as "variable," while the sequence or iterable object being iterated 

over is referred to as "sequence." For each loop iteration, the code block included within the 

for loop is run. 
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5.1.6.2 While Loops 

If a specific condition is met, a block of code is continuously executed using a while loop. The 

following is the fundamental syntax for a while loop in Python: 

while condition: 

statement(s) 

In this syntax, "statement(s)" refers to the block of code that is run for each iteration of the loop 

if "condition" is true. "Condition" refers to the Boolean expression that is verified before each 

iteration of the loop. 

Both for loops and while loops can contain nested loops, conditional statements, and other 

control flow instructions, which is a crucial point to remember. 

 

5.1.7 Python Dictionary 

The items are separated by commas and a colon (:) separates each key from its value, 

and curly brackets enclose the whole structure. Just two curly braces are used to denote an 

empty dictionary with no entries: {}. 

 

Values may not be unique within a dictionary, but keys always are. A dictionary's keys 

must be immutable data types like texts, integers, or tuples, but its values can be of any kind. 

 

5.1.7.1 Accessing Values in Dictionary 

You may make use of the well-known square brackets and the key to access dictionary items. 

Here is a straightforward illustration: 

dict={‘Name’: ‘Karan’, ‘Age’: 20, ‘Class’: ‘Third’} 

print(dict[‘Name’]) 

print(dict[‘Age’]) 

When the above code is executed, the result will be: 

Karan 

20 

 

5.1.8 Functions in Python 

The function in Python is a name-define code block. When we need to repeat a job again 

without writing the same code again, we utilize functions. It can accept parameters and give 
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back the value. Python has a DRY principle like other programming languages. DRY stands 

for Don’t Repeat Yourself. Consider a scenario where we need to do some actions/tasks many 

times. We can define that action only once using a function and call that function whenever 

required to do the same activity. Function improves efficiency and reduces errors because of 

the reusability of a code. Once we create a function, we can call it anywhere and anytime. The 

benefit of using a function is reusability and modularity. 

 

5.1.8.1 Creating a Function 

• Use the def keyword with the function name to define a function. 

• Next, pass the number of parameters as per your requirement. (Optional). 

• Next, define the function body with a block of code. This block of code is nothing but 

the action you wanted to perform. 

In Python, there is no need to specify curly braces for the function body. The only indentation 

is essential to separate code blocks. Otherwise, you will make an error. 

Syntax of creating a function: 

def function_name(parameter1, parameter2): 

 #block of code 

return value 

Here, 

• function_name: Function name is the name of the function. We can give any name to 

function. 

• parameter: Parameter is the value passed to the function. We can pass any number of 

parameters. Function body uses the parameter’s value to perform an action. 

• function_body: The function body is a block of code that performs some tasks. This 

block of code is nothing but the action you wanted to accomplish. 

• return value: Return value is the output of the function. 

 

5.1.8.2 Calling a Function 

Once we define a function or finalized structure, we can call that function by using its 

name. We can also call that function from another function or program by importing it. To call 

a function, use the name of the function with the parenthesis, and if the function accepts 

parameters, then pass those parameters in the parenthesis. 
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def function_name(parameter1, parameter2): 

 #block of code 

return value 

function_name(parameter1, parameter2) 
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5.2 Computer Vision 

The technique of understanding pictures and videos, how they are stored, and how to 

change and extract data from them is known as computer vision. The foundation or primary 

tool utilized in artificial intelligence is computer vision. Self-driving vehicles, robots, and 

photo-editing applications all heavily rely on computer vision. 

 

5.2.1 Open CV 

People use the expansive open-source package known as OpenCV for image processing, 

machine learning, and computer vision. One area in which it currently plays a crucial role is 

real-time operation, which is critical in modern systems. It may be used to find individuals, 

items, and even handwriting in pictures and movies. The OpenCV array structure may be 

handled by Python for analysis when combined with a number of libraries, like NumPy. We 

use vector space and mathematical operations on these features to detect visual patterns and 

their numerous characteristics. 

 

OpenCV's first version was 1.0. Since it is offered under a BSD license, OpenCV is 

free for both academic and commercial use. It has interfaces for C++, C, Python, and Java and 

is interoperable with Windows, Linux, Mac OS, iOS, and Android. Maximizing processing 

effectiveness for real-time applications was a design aim of OpenCV. Each piece of code is 

written in C/C++ and has been enhanced to take advantage of multi-core processing. 

 

 

Figure 5.2.1 Feature Extraction and Image Classification using Open CV 
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Numerous details that are available in the original image may be accessed from the 

original image above. Like in the image up top, there are two faces to choose from in addition 

to the person (I) in the picture. Therefore, using OpenCV, it is possible to extract every aspect 

of a face from a picture. 

 

5.2.2 Installation of Open CV on Windows 

1. Install Python: OpenCV is a Python library, Python needs to be pre-installed on the 

computer before installing Open CV. Python can be downloaded from the official Python 

website, and the installation process is usually straightforward. 

2. Install pip: Pip is a package manager for Python that allows the user to easily install and 

manage Python packages. To install pip, open a command prompt or terminal and run the 

following command: 

python − m pip − −default − pip 

3. Install OpenCV: Once Python and pip have been installed, OpenCV can be installed using 

pip. Open a command prompt or terminal and run the following command: 

pip install opencv − python 

This command installs the latest version of OpenCV and all its dependencies. 

4. Test the installation: After installing OpenCV, the installation can be tested to ensure that 

it was successful. Open a Python shell or create a new Python file and enter the following 

code: 

import cv2 

print(cv2. __version__) 

5. If the installation was successful, the version of OpenCV that was installed will be printed 

to the console. 

The OpenCV library supports the following file types: 

• *.bmp and *.dib Windows bitmaps 

• JPEG files, such as *.jpg and *.jpeg; PNG files, such as *.png; and WebP files, such as 

*.webp  

• TIFF files: *.tiff, *.tif; Sun rasters: *.sr, *.ras  

• GDAL supports both raster and vector geographic data. 

 



38 

 

5.2.3 Read, Display, and write an Image using Open CV 

5.2.3.1 Steps to read and display an Image 

In OpenCV, use these steps to read and show an image: 

1. Use the imread() method to read an image. 

2. Create a GUI window and use the imshow() method to display an image. 

3. To retain an image window on the screen for the specified number of seconds—that is, 

until the user shuts it—use the method waitkey(0). 

4. After displaying, use the destroyAllWindows() method to remove the image window 

from memory. 

 

5.2.3.2 Reading an Image 

To view the pictures, It uses the cv2.imread() technique. With this procedure, a picture is loaded 

from the given file. This function produces an empty matrix if the picture cannot be read (due 

to a missing file, poor permissions, an unsupported or invalid format, etc.). 

Syntax: cv2.imread(path, flag) 

1. Open the openCV library in python: 

import cv2 

2. Load the image you want to read using the cv2.imread() function. The function takes 

one argument, which is the file path to the image: 

image =  cv2. imread(′path/to/image. png′) 

Replace 'path/to/image.png' with the actual file path to your image. The function returns 

a NumPy array that represents the image. 

3. If you wish to see the image, then display it. The picture may be shown using the 

cv2.imshow() method. The window name and the image data are the first and second 

parameters, respectively, for the function: 

cv2. imshow(′Image′, image) 

cv2. waitKey(0) 

cv2. destroyAllWindows() 

The cv2.destroyAllWindows() method eliminates all windows, whereas the 

cv2.waitKey() function watches for a key event. Keep in mind that, depending on your 

environment, you might need to add these lines of code to see the picture. 
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5.2.3.3 Displaying an Image 

A collection of Python bindings called OpenCV-Python was created to address issues with 

computer vision. A window containing an image is displayed using the cv2.imshow() 

technique. The picture size is automatically adapted to the window. 

Syntax: cv2.imshow(window_name, image) 

To display an image in OpenCV using Python, the cv2.imshow() function can be used.  

1. Import the OpenCV library in Python: 

import cv2 

2. Utilize the cv2.imread() method to load the required picture. The file path to the picture 

is the only parameter the function accepts: 

image =  cv2. imread(′path/to/image. png′) 

Replace 'path/to/image.png' with the actual file path to image to be displayed. 

3. Use the cv2.imshow() method to show the image. The window name and the image 

data are the first and second parameters, respectively, for the function: 

cv2. imshow(′Image′, image) cv2. waitKey(0) 

The picture is shown by the cv2.imshow() method in a new window with the specified 

window name. The cv2.waitKey() method observes for the occurrence of a key event. 

If the argument is set to 0, it will continuously wait until a key is pushed. 

4. Close the window. After displaying the image, you can close the window using the 

cv2.destroyAllWindows() function: 

cv2. destroyAllWindows() 

This will destroy all windows. 

 

5.2.3.4 Writing an Image 

An image may be saved to any storage medium using the cv2.imwrite() API. This will 

store the image in the current working directory using the selected format. 

Syntax: cv2.imwrite(filename, image) 

To save an image in OpenCV using Python, the cv2.imwrite() function can be used. 

1. Import the OpenCV library in Python: 

import cv2 

2. Load the image to be saved using the cv2.imread() function: 

image =  cv2. imread(′path/to/image. png′) 
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3. Use the cv2.imwrite() method to save the picture. The function accepts two arguments: 

first, the file name you wish to save the image as, and second, the image data: 

cv2. imwrite(′path/to/save/image. png′, image) 

The image will be saved in the specified location. 

Note that the format of the stored picture will depend on the file extension chosen in the file 

name. The picture will be stored in PNG format, for instance, if it is saved as a PNG file. The 

format of the stored image will alter if a different file extension is chosen.  
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5.3 COCO Dataset 

5.3.1 Introduction to COCO 

Commonly utilised in computer vision research, the Common Objects in Context 

(COCO) dataset is a sizable object recognition, segmentation, and captioning dataset. The 

COCO Consortium, which is made up of Microsoft, Carnegie Mellon University, and a number 

of other colleges and businesses, hosted it after Microsoft built it. 

 

The COCO dataset contains more than 330,000 images with more than 2.5 million 

object instances that have been tagged and annotated with bounding boxes, segmentation 

masks, and descriptions. The images are diverse and show a range of scenes, including indoor 

and outdoor locations, human activities, and other object categories, such as animals, cars, and 

furniture. 

 

Each instance of an item in an image is meticulously labelled with a bounding box or 

segmentation mask by a team of experienced annotators, who also offer a short summary of 

the image's content for the annotations in the COCO dataset. The annotations are then examined 

and corrected by a second team of annotators to ensure high quality and accuracy. 

 

A common benchmark for assessing object detection, segmentation, and captioning 

algorithms is the COCO dataset. The dataset may be used by researchers to develop, test, and 

compare their models' performance to that of cutting-edge techniques. The dataset also has a 

leader board where researchers may post their findings and see how they compare to those of 

their peers. 

 

The COCO dataset additionally includes subtitles for each image in addition to the 

object recognition and segmentation annotations. Short, descriptive sentences that summarise 

the substance of the images are used as captions. The captions may be utilised for additional 

applications including image search and retrieval in addition to training and assessing image 

captioning models. 

 

The COCO dataset may be accessible via the COCO API, a Python-based interface for 

accessing and altering the dataset, which can be downloaded from the COCO website. The API 

offers a collection of tools for testing the effectiveness of object identification, segmentation, 
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and captioning algorithms in addition to methods for importing and modifying the photos and 

annotations. 

 

In many different areas of computer vision research, such as object identification, 

segmentation, tracking, and captioning, the COCO dataset has been employed. The dataset has 

also been used to research a variety of other subjects, including picture retrieval, human-object 

interaction, and visual question answering. The dataset is a useful resource for academics in 

the field due to its scale and diversity, and it has helped advance the state of the art in several 

computer vision-related fields. 

 

In conclusion, a large dataset for object detection, segmentation, and captioning known 

as the COCO dataset is often used in computer vision research. It contains around 330,000 

images and more than 2.5 million instances of labelled and annotated objects with bounding 

boxes, segmentation masks, and descriptions. The dataset has improved the state of the art in 

various areas of computer vision, making it a valuable tool for researchers in the field. 

 

5.3.2 Inside COCO Dataset 

A sizable image recognition dataset for tasks including object detection, segmentation, 

and captioning is called COCO (Common Objects in Context). More than 330,000 photos with 

80 item categories and 5 scene-specific subtitles are included. The COCO dataset has been 

utilised to train and assess several cutting-edge object identification and segmentation 

algorithms in computer vision research. 

The photos and their annotations make up the dataset's two primary components. 

• The photos are arranged in a hierarchy of folders, with the train, validation, and test 

sets' subdirectories located under the top-level directory. 

• JSON format is used for the annotations, and each file corresponds to a single image. 

The following details are included in each annotation in the dataset: 

• Image file name 

• Image size (width and height) 

• A list of items that includes the following details: Bounding box coordinates (x, y, 

width, and height); segmentation mask (polygon or RLE format); key points and their 

locations; object class (e.g., "person," "car"); (if available) 
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• A scenario description in five captions. 

Additional data is also provided by the COCO dataset, including picture super categories, 

licenses, and coco-stuff. (Pixel-wise annotations for stuff classes in addition to 80 object 

classes). 

Multiple sorts of annotations are offered by MS COCO, 

• Object recognition for 80 distinct objects with complete segmentation masks and bounding 

box coordinates. 

• Include pixel maps showing 91 amorphous background regions in picture segmentation. 

• Panoptic segmentation uses 91 categories of "stuff" and 80 categories of "things" to identify 

objects in pictures. 

• Dense posture with over 39,000 photographs and over 56,000 tagged people, including 

pixel mapping, a template 3D model, and explanations in natural language for each picture. 

• Annotations on over 250,000 people's important spots, including the left hip, right eye, and 

nose. 

 

Figure 5.3.1: Image Classification using COCO Dataset 

5.3.3 MS COCO Dataset Classes 

The two primary categories of the COCO (Common Objects in Context) dataset classes are 

"things" and "stuff." 

Things classes contain things that can be picked up or handled readily, such as home goods, 

automobiles, and animals. In COCO, examples of "things" classes include: 

• Person 

• Bicycle 

• Car 
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• Motorcycle 

Classes of "stuff" include backdrop or ambient elements like the sky, the sea, and the road. In 

COCO, examples of "stuff" classes include: 

• Sky 

• Tree 

• Road 

A comprehensive list of COCO's 80 classes is shown in the graphic below.

 

Figure 5.3.2: List of 80 classes in COCO Dataset 

It's crucial to remember that the COCO dataset has a built-in bias caused by class 

imbalance. When there is a considerable disparity between the quantity of samples in one class 

and other classes, there is a class imbalance. Some object classes contain much more picture 

occurrences than others in the COCO dataset context. 

 

Bias in machine learning model training and assessment might result from the class 

imbalance. This is due to the model being exposed to more samples of the common classes, 

which helps it become more adept at identifying them. As a result, the model could require 

assistance in identifying the less common classes and doing badly in them. 

 

Additionally, if the dataset is biased, the model may be overfit on the majority class and 

perform better in this class but worse in others. There are several methods for addressing the 

class imbalance problem, including oversampling, under sampling, and the fabrication of 

synthetic data. 
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Figure 5.3.3: Graphical Representation of Classes v/s Number of images present in it. 

 

5.3.4 Using COCO Dataset 

The COCO dataset provides a starting point for computer vision to develop, test, improve, 

and scale up models for the annotation process more quickly. 

 

5.3.4.1 Object detection 

The most common use of computer vision is object detection. In order to enable their 

categorization and localisation in a picture, it recognises objects with bounding boxes. 

Models for object detection may be trained using the COCO dataset. The dataset offers 

bounding box coordinates for 80 distinct types of items, allowing models to be trained to 

recognise bounding boxes and identify objects in the photos. 

 

 

Figure 5.3.4: Object Detection in Different Images 
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5.3.4.2 Instance segmentation 

Instance segmentation is a computer vision problem that entails locating and classifying 

individual items inside an image while also giving each instance of an object a distinct label. 

 

Instance segmentation models frequently start by locating the objects in the picture using 

object recognition methods like bounding box regression and non-maximum suppression. 

Then, the models separate the items inside the bounding boxes using semantic segmentation 

approaches, including Convolutional Neural Networks (CNNs), and give distinct labels to each 

instance. Instance segmentation annotations from the COCO dataset can be utilised to train 

models for this job. 

 

 

Figure 5.3.5: Representation of Instance Segmentation 
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CONCLUSION 

An extremely efficient method for managing and monitoring traffic is the Real Time 

Traffic Management method utilising the YOLOv3 Algorithm. The COCO dataset and 

OpenCV library were used in the research to recognise and track automobiles and people in 

real-time video streams using the YOLOv3 technique. 

 

The findings from the planned CNN model were extremely accurate, and they were 

made even more precise by using non-max suppression and overlapping bounding box removal 

approaches. The system proved to be effective in properly detecting and tracking objects in 

real-time by being put through a variety of realistic scenarios. This project may be used to 

monitor and control traffic flow on real-time videos, which will increase safety, lessen 

congestion, and optimise traffic flow. A very effective and efficient answer to the issues of 

contemporary traffic management is provided by the Real Time Traffic Management System 

employing the YOLOv3 Algorithm.  
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FUTURE SCOPE 

The Real Time Traffic Management System employing the YOLOv3 Algorithm can be 

improved in several ways in the future. Among them are: 

1. Integration of more sophisticated features: To give more thorough insights into traffic 

management, the present system may be enhanced by incorporating more 

sophisticated features such vehicle categorization, licence plate identification, and 

driver behaviour analysis. 

2. Support for many cameras: The system may be improved to accommodate several 

cameras, offering more thorough coverage and improved traffic flow monitoring. 

3. Integration with traffic control systems: To enhance general traffic flow and ease 

congestion, the system may be combined with traffic control systems including traffic 

lights, road signs, and other traffic control mechanisms. Real-time traffic flow 

prediction: Future work could focus on developing algorithms to predict traffic flow 

patterns based on real-time data from the system, which could aid in decision-making 

for traffic management authorities. 

4. Cloud-based implementation: The system might be set up on a cloud-based platform, 

allowing for more effective data processing and real-time data access from anywhere. 

 

The YOLOv3 Algorithm-based Real Time Traffic Management System has a lot of room to 

grow and improve, and it can offer traffic management authorities useful information and 

solutions. 
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