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ABSTRACT 

The driver fatigue is an important issue in many vehicle accidents. According 

to the National Highway Safety Administration, drowsy driving causes more than 

100,000 crashes, 71,000 injuries, and 1,550 death toll each year in India. 

  Earlier approach normally based on DriCare technique, detects the driver’s 

fatigue status, such as yawning, blinking, and duration of eye closure, using video 

images, without equipping their bodies with devices. This approach uses KCF 

(Kernelized Correlation Filter) and CNN (Convolution neural network) algorithms. 

The proposed work is based on the issues related to driver drowsiness detection 

and alert system. The proposed algorithm uses the features of deep convolutional neural 

network-like RESNET (Residual neural network) and MC-KCF (Multi Convolution 

neural network-KCF). These techniques are used to detect driver drowsiness by 

measuring yawning, head position and eye rotation. 

Keywords: Deep Convolution Neural network, fatigue detection, face tracking, 

Drowsiness Detection, feature location, ResNet, MC-KCF. 
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CHAPTER 1 

Introduction 

1.1 Introduction 

 Around 1.3 million individuals pass away each year due to car accidents, which 

are primarily caused by driver distraction and drowsiness. Many individuals travel long 

distances on highways, which can lead to fatigue and stress. Drowsiness can arise 

unexpectedly, resulting from sleep disorders, medication, or for instance, boredom can 

arise while driving for long periods. Therefore, drowsiness can create hazardous 

situations and elevate the likelihood of accidents. 

 Given the circumstances, it is crucial to employ modern technologies to develop 

and construct systems capable of monitoring drivers and assessing their attentiveness 

throughout the entirety of their time on the road. 

 Project team has developed a solution to prevent such accidents. The system 

involves utilizing a camera to capture the user's visual features, with the use of face 

detection and CNN techniques to identify any signs of drowsiness in the driver. When 

drowsiness is detected, an alarm will sound to alert the driver, prompting them to take 

precautionary measures. The detection of driver drowsiness is instrumental in reducing 

the number of fatalities caused by traffic accidents. 

1.2 Problem Statement 

 Road accidents caused by human errors are responsible for numerous fatalities 

and injuries worldwide. The primary reason behind such accidents is the driver's 

drowsiness, which could result from sleep deprivation or prolonged driving hours. To 

address this issue, it is imperative to develop a system that leverages the latest available 

technologies to minimize the likelihood of accidents. The main objective of this system 
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is to create a model that can issue an alert in case the driver shows signs of drowsiness. 

This alert will help the driver become aware of their condition and take the necessary 

measures to prevent an accident. 

1.3 Project Requirements 

1.3.1 Software 

Software required are: 

• Windows, Linux, MacOS used for operating system. 

• Python 3.10(recent version) is used as language. 

• Python IDE, Jupiter Notebook used as IDE’s. 

1.3.2 Hardware 

Minimum Hardware required are: 

• High computational processor 

• Minimum 4 GB RAM 

• Webcam which supports night vision 

• Alarm 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Drowsiness Detection System Using Physiological Signals 

Author: T. S. Yengatiwar, Trupti K. Dange. 

Publication year: 2013 

 Drowsiness can be detected by measuring physiological parameters like heart 

rate, pulse rate, breathing rate, respiratory rate, and body temperature are considered 

more precise and dependable in identifying drowsiness since they exhibit measurable 

physiological changes directly related to the driver's physical condition. When a person 

becomes drowsy, their physiological parameters tend to alter, for instance, a drop in 

blood pressure, heart rate, and body temperature. Drowsiness detection systems that 

rely on these physiological indicators can identify such changes and caution the driver 

when they are at risk of falling asleep. However, since these systems necessitate 

electrodes to be attached to the driver's body, they are considered invasive. Here is a 

compilation of drowsiness detection systems that rely on physiological conditions. 

2.1.1. EEG-BASED DRIVER FATIGUE DETECTION 

 A system has been suggested for identifying driver fatigue and exhaustion 

prevent Car accidents resulting from drivers who were sleepy or drowsy. This system 

uses Electroencephalogram (EEG) signals to determine the degree of sleepiness or 

drowsiness experienced by a driver. The system first identifies an index that 

corresponds to various levels of drowsiness. A cheap neuro signal acquisition device 

with a single electrode is used to obtain the EEG signal from the driver. A collection of 

data designed for simulated car drivers experiencing different levels of drowsiness was 

collected locally to evaluate the system. The findings indicated that the system proposed 

was successful in detecting fatigue in all the subjects. 
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2.1.2. PULSE SENSOR METHOD 

 Previous studies have primarily focused on using drivers' physical conditions to 

detect drowsiness. To address this issue, Rahim developed a system that uses infrared 

heart rate or pulse sensors to detect drowsy drivers. The pulse sensor gauges the heart's 

pulse rate by detecting the driver's finger or hand. By detecting the quantity of blood 

circulating through the finger, the sensor can determine the amount of oxygen in the 

blood, causing reflecting infrared light and transmit the data to the Arduino 

microcontroller. The variation in oxygen levels is then processed by HRV frequency 

domain software to visualize the driver's heart pulse rate. The results of the experiment 

showed that the LF/HF As drivers shift from being alerted to feeling drowsy, the ratio 

of oxygen tends to decline. By issuing timely warnings, numerous car accidents can be 

averted.  

2.1.3. WEARABLE DRIVER DROWSINESS DETECTION SYSTEM 

 In the past, Applications designed for mobile devices have been created to 

identify and detect driver drowsiness. However, these applications can distract drivers 

and lead to accidents. To address this issue, Lenget developed a drowsiness detection 

system in the shape of a custom-designed wristband that can be worn has been 

developed, featuring a PPG signal and galvanic skin response sensor. The information 

gathered by these sensors is sent to a mobile device, which functions as the primary 

assessment unit. Motion sensors in the mobile device analyse the data, and five features 

(heart rate, breathing rate, level of stress, variability in pulse rate, and the count of 

adjustments made) are extracted for computation. These characteristics are 

subsequently employed as calculation parameters for an SVM classifier, which is 

utilized to assess the driver's level of drowsiness. The findings of the experiment 

indicated an accuracy up to 98.02% for the proposed system. In the event of drowsiness, 

the mobile device generates a warning system that makes use of both visual and 

vibrational alerts to notify the driver. 
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2.1.4. WIRELESS WEARABLES METHOD 

 Warwick has proposed a drowsiness detection system that utilizes a wearable 

biosensor known as Bio-harness to reduce the likelihood of road accidents. The system 

is comprised of two stages. During the first stage, the Bio-harness gathers the driver's 

physiological data, such as ECG, heart rate, and posture, among other metrics. This data 

is then analysed to determine key parameters linked to drowsiness. In the second stage, 

a drowsiness detection algorithm is established, and a mobile application is developed 

to warn drowsy drivers. 
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2.2 Drowsiness Detection with OpenCV using EAR. 

Author: Adrian Rosebrock 

Publication year: 2017 

 The paper proposes an algorithm that can detect eye blinks in real-time using 

video footage from a standard camera. The algorithm utilizes this paper proposes the 

use of landmark detectors that are trained on datasets containing images of people in 

everyday settings (in-the-wild datasets) for the purpose of detecting eye blinks in real-

time from a video sequence captured by a standard camera, which are highly robust 

against different factors such as head orientation, varying illumination, and facial 

expressions. These detectors can precisely detect facial landmarks and the algorithm is 

designed to estimate the degree of eye opening, which is essential for detecting eye 

blinks accurately. 

 Several techniques have been proposed for automatic identification of eye 

blinks in video sequences, and some of these methods depend on analysing the motion 

within the eye region. Various techniques have been proposed to automatically identify 

eye blinks in video sequences, including methods that rely on analysing the motion in 

the eye region. Typically, these methods involve detecting the face and eyes using a 

detector such as the Viola-Jones algorithm. Then, the movement in the eye area is 

evaluated using techniques such as estimating optical flow, sparse tracking, or frame-

to-frame intensity differences with adaptive thresholding. Finally, the algorithm 

determines whether the eyes are covered by eyelids or not. 

 At present, there are facial landmark detectors available that can accurately 

capture various key points on a human face image, including the corners of the eyes 

and the eyelids, with high reliability in real-time. These landmark detectors are 

advanced and use a regression approach, where a mapping is learned from an image to 

the positions of the landmarks or another landmark parametrization. They are trained 

on datasets that contain images taken in diverse settings, which makes them robust to 
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challenges like changes in illumination, various facial expressions, and moderate non-

frontal head rotations. 

Proposed method: 

 To blink is to quickly shut and then reopen one's eyes., and the pattern of blinks 

varies slightly from person to person, including differences in speed, degree of eye 

squeezing, and blink duration. Typically, an eye blink lasts anywhere between 100 to 

400 milliseconds. In this paper, it is proposed to use advanced facial landmark detectors 

to locate the eyes and define the shape of the eyelids in an image. Based on the 

landmarks detected, the eye aspect ratio (EAR) is computed as an indicator of the 

degree of eye-opening. However, since the EAR value in each frame may not be able 

to accurately detect eye blinks, a classifier is trained to analyse a longer sequence of 

frames. When an eye is open, the EAR value remains relatively stable, but it gradually 

decreases towards zero as the eye closes. 

 The article introduced an algorithm capable of detecting eye blinks in real-time. 

It was shown that facial landmark detectors based on regression techniques can 

accurately estimate the degree of eye openness. These detectors are also highly robust 

against various challenges, such as low image quality (mostly due to low resolution) 

and real-world factors like non-frontal head positions, poor lighting, and facial 

expressions. The proposed approach, which employs a Support Vector Machine (SVM) 

and considers a temporal window of the eye aspect ratio (EAR), performs better than 

the EAR thresholding method. 
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2.3 Driver Drowsiness detection using ANN image processing 

Authors: S. Moca1, T. Vesselenyi1, B. Tătaru1, A. Rus1, T. Mitran1.  

Publication year: 2017. 

 This study aimed to explore the feasibility of developing a drowsiness detection 

system for car drivers using three methods: processing of EEG and EOG signals, and 

analysis of driver images based on eye state (open or closed) classification. The EEG 

and EOG methods are used to measure brain activity and signals from the muscles 

responsible for eye movement, respectively. On the other hand, the eye image analysis 

method involves observing the state of the eye, whether it is open or closed. 

 The EEG and EOG sensors Electrodes need to be positioned on specific parts 

of the body and be connected through conductive gel or wires, causing discomfort to 

the user. However, advancements the problems associated with traditional EEG 

methods may be addressed by utilizing advancements in materials science and MEMS 

technology, including the application of dry electrodes for EEG. 

 The advancement of EEG technology has been largely fuelled by the 

development of brain-computer interfaces for various applications, including devices 

to assist people with disabilities. One of the primary goals of recent EEG research is to 

differentiate between low and high alpha rhythm peaks, which can be used to determine 

a person's level of alertness. The study involved using EOG signals from three sensors 

(EOG1, EOG2, EOG3) to identify four distinct signal types after pre-processing. By 

combining these signal types, researchers were able to determine the direction of eye 

movements (upward, downward, leftward, and rightward), providing the necessary 

information to differentiate between alert and drowsy states.  

The researchers used MATLAB Neural Network Toolbox and Deep Learning 

Toolbox's autoencoder module to determine if these tools could be used to classify 

driver drowsiness based on images. They acquired 200 images of a driver during normal 

driving, with half showing open or half-open eyes and the other half showing closed 
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eyes. The hypothesis was that closed eyes would indicate drowsiness, while open or 

half-open eyes would indicate an alert state. They used a one-layer artificial neural 

network for analysis. 
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CHAPTER 3 

Methodology 

3.1 Proposed Methodology 

3.1.1 Existing System: 

There are several existing systems for detecting driver drowsiness, and they are: 

• Various technologies can detect drowsiness in drivers to prevent accidents. 

Video-based systems use cameras to monitor the driver's face and identify signs 

of drowsiness such as drooping eyelids, head nodding, or yawning. 

• Infrared-based systems use infrared sensors to detect changes in skin 

temperature, which can indicate drowsiness. 

• EEG-based systems utilize electrodes on the driver's scalp to measure brain 

activity and identify changes in brain waves that correspond to drowsiness. 

• Wearable devices that monitor changes in heart rate, breathing, and movement 

can also indicate drowsiness. 

• Steering-based systems use sensors in the steering wheel to detect changes in 

grip strength or steering behaviour that can indicate drowsiness. 

3.1.2 Proposed System: 

In this system, instead of existing systems, an alternative approach was used: 

• Artificial intelligence and machine learning algorithms are utilized in machine 

learning-based systems to detect drowsiness. These systems use data from 

multiple sources, such as video and sensor data, to identify patterns and 

indications of drowsiness. 

 A Convolutional Neural Network (CNN) is the model used in this 

scenario, which is frequently used for image classification and multi-class classification 

of images. 
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 A Convolutional Neural Network (CNN) is the model used in this 

scenario, which is frequently used for image classification and multi-class classification 

of images. The CNN comprises convolution layers that contain adaptable filters. The 

filters are moved across the input in a forward propagation process, with each 

movement known as a stride. The CNN model enhances the accuracy of the system. 

 A camera captures continuous images of the driver's face, and a face detection 

process identifies the driver's face. The driver's face is then classified as either drowsy 

or not drowsy using a CNN-based classification model. The KCF and RESNET CNN 

are utilized to construct the classification model. 

3.2 Proposed Techniques: 

3.2.1 Artificial Intelligence (A.I): 

Artificial Intelligence (AI) is a field of computer science that aims to create 

intelligent machines that can learn from experience, reason, and make decisions based 

on data. AI has made significant progress in recent years and is now being used in a 

wide range of applications, from self-driving cars to medical diagnosis and treatment. 

There are different types of AI, including rule-based or symbolic AI, machine 

learning, and deep learning. Rule-based or symbolic AI uses pre-defined rules and logic 

to make decisions based on a set of if-then statements. Machine learning is a type of AI 

that allows machines to learn from data without being explicitly programmed. It uses 

algorithms to identify patterns in data and make predictions based on those patterns. 

Deep learning is a type of machine learning that uses neural networks to simulate the 

way the human brain works. It can process vast amounts of data and make predictions 

with high accuracy. 

AI is used in many applications, including natural language processing (NLP), 

computer vision, robotics, healthcare, and finance. In natural language processing, AI 

is used to analyse and understand human language, enabling machines to interact with 

humans more effectively. In computer vision, AI is used to analyse images and videos, 
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allowing machines to recognize and identify objects, people, and other visual 

information. In robotics, AI is used to create intelligent robots that can perform tasks 

autonomously. In healthcare, AI is used to analyse medical data and make predictions 

about diseases, allowing doctors to provide better diagnoses and treatments. In finance, 

AI is used to analyse financial data and make predictions about markets, allowing 

investors to make better decisions. 

 

Figure 1 Venn Diagram of A.I 
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3.2.2 Machine Learning: 

 Machine learning is a subset of artificial intelligence (AI) that allows computer 

systems to automatically learn and enhance their performance by learning from 

experience without the need for explicit programming. It is a field of computer science 

that involves developing computer programs that utilize algorithms and statistical 

models to recognize and learn patterns from data. In recent years, significant progress 

has been made in this field, and the main aim of machine learning is to create programs 

that can access data and use it to improve their performance autonomously. Although 

there are various machine learning algorithms available, currently the three primary 

techniques being used are supervised, unsupervised, and reinforcement learning.  

 Although there are various types of machine learning algorithms that are utilized 

for use-cases, currently, the three primary techniques being used are: 

• Supervised ML Algorithm  

• Unsupervised ML Algorithm Reinforcement  

• ML Algorithm 

 Out of the various types of machine learning algorithms available, the one 

utilized in this system is a supervised machine learning algorithm. 

3.2.3 Deep Learning: 

 Deep learning is a form of artificial intelligence that emulates the human brain's 

ability to analyse data and detect patterns to support decision-making. It is a subdivision 

of machine learning in AI that employs networks capable of unsupervised learning from 

unstructured or unlabelled data. This technique is also known as deep neural learning 

or deep neural networks. 

  Deep learning is a machine learning technique that uses complex algorithms 

capable of processing and making decisions based on unstructured data without 

supervision. This approach enables deep learning systems to recognize patterns and 

carry out tasks such as object and speech recognition, and language translation. 
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  Deep learning is a subfield of artificial intelligence that emulates the way human 

brains process information to perform various tasks, including speech recognition, 

object detection, language translation, and decision-making. Unlike traditional machine 

learning methods, deep learning can learn autonomously without human intervention 

and can handle unstructured and unlabelled data. This technology has diverse 

applications, such as preventing fraud and money laundering, among other use cases. 

3.2.4 Neural Networks: 

           Neural networks are artificial systems that are modelled after the structure 

and function of biological neural networks. These networks are capable of learning and 

adapting to new information without the need for explicit instructions. Instead, they 

analyse datasets and examples to identify patterns and relationships on their own. 

                        A neural network is made up of various components such as neurons, 

connections, biases, weights, a propagation function, and a learning rule. The neurons 

receive input from previous neurons, and each has an activation function, threshold, 

and output function. The connections between neurons have weights and biases, which 

control how information is passed between them. The propagation function calculates 

the input and output of each neuron based on the function of the preceding neurons and 

their corresponding weights. The learning rule is responsible for adjusting the weights 

and thresholds of the network's variables. 

 In neural networks, units across multiple layers are connected to one another, 

with each connection carrying a weight that determines the impact of one unit on the 

other. The network receives data at the input layer, which is then transmitted through 

various layers before producing the final output at the output layer. Along the way, the 

network learns from the data and gains a deeper understanding of it, allowing it to make 

accurate predictions or classifications. 
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Figure 2 Layers in Neural Network 

3.2.5 Convolution Neural Network (CNN): 

 A Convolutional Neural Network (ConvNet/CNN) is a type of Deep Learning 

algorithm that can analyse an image input and assign significance to different features 

or objects within the image using learnable weights and biases. Unlike other 

classification methods, ConvNets require less pre-processing. In traditional techniques, 

filters are manually designed, whereas a ConvNet can learn these filters with enough 

training. 

 A Convolutional Neural Network (ConvNet/CNN) can effectively capture the 

spatial and temporal connections within an image by using appropriate filters. Its 

structure allows for better fitting of the image dataset by reducing the number of 

parameters and reusing weights. In simpler terms, the network can be trained to 

comprehend the complexity of the image more accurately. 

 The term "Convolution" in Convolutional Neural Network (CNN) refers to a 

specific type of linear operation called convolution in mathematics. Convolution is 

when two functions are multiplied together to produce a third function that shows how 

one function changes the shape of the other. In simpler terms, in CNNs, two matrix 

representations of images are multiplied to create an output that extracts feature from 

the image. 
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3.2.5.1 Convolutional Layer: 

 In neural networks, a convolution layer is a type of layer that performs the 

convolution operation on input data. It is typically used in image recognition and 

computer vision tasks. 

The convolution layer consists of a set of filters, also called kernels or feature 

maps, that slide over the input data and perform the convolution operation. Each filter 

detects a specific feature or pattern in the input data, such as edges or corners. The 

output of the convolution layer is a set of feature maps, where each map represents the 

response of one filter to the input data. The feature maps are typically down sampled 

using a pooling operation, such as max pooling or average pooling, to reduce their size 

and computational complexity. The parameters of the convolution layer include the size 

of the filters, the number of filters, and the padding and stride values used during the 

convolution operation. These parameters are learned during training using 

backpropagation, allowing the network to learn the best set of filters for a given task. 

The Convolution Operation 

 The convolution operation is a mathematical operation that is commonly used 

in signal processing and image processing. In the context of neural networks, 

convolution is used to extract features from input data, such as images or audio signals. 

The convolution operation involves sliding a small matrix, called a kernel or 

filter, over the input data. At each position of the kernel, the values of the kernel and 

the corresponding values of the input data are multiplied together and then summed. 

The result is a single output value, which represents the degree of similarity between 

the input data and the kernel at that position. The process of sliding the kernel over the 

input data is repeated for every position in the input data, resulting in a new output data 

structure. The size of the output data structure is typically smaller than the input data 

structure, depending on the size of the kernel and the amount of padding used. 
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Figure 3 Operation of Convolution  

Stride 

 Stride refers to the number of pixels shifts that a filter makes across the input 

matrix. The filter moves from left to right across the width of the image using a specified 

stride value. Once the filter reaches the end of the row, it moves down to the beginning 

of the image (left) with the same stride value and repeats the process until it has 

traversed the entire image. If the stride value is 1, the filters move one pixel at a time. 

If the stride value is 2, the filters move two pixels at a time. The diagram below 

illustrates how convolution operates with a stride value of 2. 

 

Figure 4 Stide 
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3.2.5.2 Pooling Layer: 

 A pooling layer is a common layer in Convolutional Neural Networks (CNNs) 

that is typically inserted after a convolutional layer. Its main function is to reduce the 

spatial dimensions of the output feature maps generated by the convolutional layer 

while retaining the important features learned by the filters. There are two main types 

of pooling layers: average pooling and max pooling. 

3.2.5.2.1 Max Pooling: 

 In max pooling, the input feature map is divided into non-overlapping regions 

or windows, typically of size 2x2 or 3x3. For each window, the maximum value within 

that region is selected and placed in the output feature map, while the other values are 

discarded. This process is repeated for each window, effectively down sampling the 

feature map and retaining only the strongest activations. 

 

Figure 5 Operation of Max Pooling 

3.2.5.2.2 Average Pooling: 

 In average pooling, the input feature map is divided into non-overlapping 

regions or windows, typically of size 2x2 or 3x3. For each window, the average value 

of all the activations within that region is computed and placed in the output feature 

map. This process is repeated for each window, effectively down sampling the feature 

map while retaining information about the distribution of activations within each 

region. 
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Figure 6 Operation of Average Pooling 

3.2.5.2.3 Global Pooling: 

 Global pooling is a specific type of pooling layer where the entire feature map 

is reduced to a single value, instead of dividing the feature map into regions. The most 

common type of global pooling is global average pooling, where the average value of 

all the activations in the feature map is computed and placed in the output. Global 

pooling is often used in the final layers of a CNN for classification tasks, where the 

output of the network needs to be a fixed-size vector representing the probability 

distribution over the possible classes. 

3.2.5.3 Fully Connected Layer: 

 In deep learning, a fully connected layer (FC layer) is a type of layer in a neural 

network where all the neurons in one layer are connected to all the neurons in the next 

layer. This means that every input neuron is connected to every output neuron, and each 

connection has a corresponding weight and bias. 

A fully connected layer is also known as a dense layer or a linear layer. It is 

typically used as the last layer in a neural network, where it performs the final 

classification or regression of the input data. The output of a fully connected layer is 

calculated by taking a weighted sum of the inputs and adding a bias term, followed by 

an activation function. The weights and biases in the fully connected layer are learned 

through a process called backpropagation, which is a type of supervised learning 

algorithm. 
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3.2.5.4 Dropout Layer: 

 Dropout is a regularization technique used in Neural Networks to prevent 

overfitting. It is implemented as a layer in the network architecture, called the dropout 

layer. 

The dropout layer randomly selects a subset of neurons in the previous layer 

and sets their outputs to zero during training. This means that the information flow 

through those neurons is temporarily removed from the network, and the remaining 

neurons must learn to work together to compensate for the missing information. The 

dropout layer is applied during the training phase only, and the full set of neurons is 

used during testing. 

3.2.5.5 RESNET 

 ResNet (short for "Residual Network") is a type of deep neural network 

architecture that was introduced in 2015 by Microsoft Research. It was designed to 

address the problem of vanishing gradients in deep neural networks, which can make it 

difficult for the network to learn effectively. 

The key idea behind ResNet is the use of residual connections, which allow the 

network to "skip" over layers and make it easier for gradients to flow back through the 

network during training. In a standard neural network, each layer applies a set of 

transformations to the input, but in a ResNet, some of the layers have a "shortcut" 

connection that adds the input to the output of the layer. This creates a "residual" that 

can be passed forward to the next layer, allowing the network to learn more complex 

and deeper representations. 

3.2.5.5.1 Residual Blocks: 

 A Residual Block is the fundamental building block of a Residual 

Network (ResNet) architecture. It consists of one or more convolutional layers, 

followed by a set of shortcut connections that allow the network to bypass one or more 

layers and pass information directly from one layer to another. 
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Figure 7 Residual Blocks 

 

 The shortcut connection in a Residual Block is a skip connection that 

adds the output of one or more layers to the output of the block. The idea behind this is 

that if the input of a layer can be represented by the sum of its output and the input to 

the layer, then the layer should learn a residual mapping instead of a direct mapping. 

By doing so, the network can learn more efficient and accurate representations, as it is 

easier for the network to learn the difference between the output and input rather than 

learning the direct mapping. 

The residual block has been shown to be highly effective in enabling the training of 

very deep neural networks. By adding shortcut connections between the layers, the 

gradient can flow more easily through the network during backpropagation, which 

reduces the vanishing gradients problem and enables the training of deeper networks. 

3.2.5.5.2 Architecture Of RESNET: 

 The architecture of a 34-layer plain network is based on VGG-19, with the 

addition of skip connections or shortcut connections. These connections are 

implemented through residual blocks, which convert the architecture into a residual 

network. A diagram of this can be seen in the figure below. 
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Figure 8 Architecture of ResNet 
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3.2.5.5.3 Using ResNet with Keras: 

 Keras is a deep-learning library that is available for free and can be used on top 

of TensorFlow. Within Keras, there is a feature called Keras Applications, which offers 

different versions of ResNet. 

• ResNet50 

• ResNet50V2 

• ResNet101 

• ResNet101V2 

• ResNet152 

• ResNet152V2 

3.2.6 Back Propagation: 

Backpropagation is a widely used algorithm for training artificial neural 

networks. It is an optimization algorithm that calculates the gradients of the loss 

function with respect to the weights of the network, allowing the weights to be updated 

in the direction that minimizes the loss. 

The backpropagation algorithm works by first propagating the input forward 

through the network, calculating the output of each neuron, and finally calculating the 

loss between the predicted output and the actual output. It then propagates the error 

back through the network, calculating the gradient of the loss with respect to each 

weight in the network. This is done by applying the chain rule of calculus to calculate 

the derivative of the loss with respect to each intermediate output in the network, and 

then using these derivatives to calculate the derivative of the loss with respect to each 

weight. Once the gradients have been calculated, they are used to update the weights of 

the network using an optimization algorithm such as gradient descent. The optimization 

algorithm iteratively updates the weights in the direction that reduces the loss function. 
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Figure 9 Back Propogation 

3.2.7 Activation Functions: 

 Activation functions are a key component of artificial neural networks, used to 

introduce non-linearity into the output of a neuron. They are applied to the weighted 

sum of the inputs and bias of a neuron to produce its output. The choice of activation 

function has a significant impact on the performance and efficiency of a neural network. 

There are several types of activation functions, including: 

1. Sigmoid function 

2. Rectified Linear Unit (ReLU) function. 

3. Hyperbolic Tangent (tanh) function 

4. SoftMax function 

3.2.8 Training: 

 Deep learning neural networks are designed to learn how to map inputs to 

outputs. This is accomplished by adjusting the weights of the network in response to 

the errors made by the model on the training dataset. These adjustments are made 

continuously to minimize the error until the learning process either comes to a stop or 

an acceptable level of accuracy is achieved. In other words, the goal of the network is 

to continually refine its mapping function to produce more accurate and precise results. 
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 The optimization problem in deep learning neural networks is typically solved 

using the stochastic gradient descent algorithm. This algorithm utilizes the 

backpropagation algorithm to update the model's parameters in each iteration. In other 

words, the stochastic gradient descent algorithm is responsible for adjusting the weights 

of the network based on the errors calculated during the backpropagation process. 

 A neural network model learns how to map a particular set of input variables to 

the output variable using examples. The goal is to ensure that this mapping works well 

not only on the training dataset but also on new, unseen examples. This ability to 

function effectively on specific as well as new examples is known as the model's ability 

to generalize. Essentially, the model must be able to apply what it has learned to new, 

unseen data while still producing accurate results. 

• Loss function: This is a function used to assess the model's performance 

on the training dataset, based on a particular set of weights. 

• Epochs: The number of times the model goes through the entire training 

dataset before the training process is stopped. 

3.2.8.1 Test Loss: 

 Test loss is a metric that is commonly used in machine learning to 

evaluate the performance of a trained model on a dataset that was not used during the 

training process. It measures the difference between the predicted outputs of the model 

and the actual outputs for a set of input data in the test dataset. 

The test loss is computed using a loss function that compares the predicted output of 

the model to the actual output for each input in the test dataset. The loss function used 

depends on the type of problem being solved. 

3.2.8.2 Test Accuracy: 

 Test accuracy is a metric used to evaluate the performance of a machine 

learning model on a test dataset. It measures the percentage of correct predictions made 

by the model on the test dataset. 
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 To compute test accuracy, the model is first trained on a training dataset, 

and its performance is evaluated on a validation dataset. Once the model is trained and 

tuned to perform well on the validation dataset, it is then tested on a separate test dataset 

to evaluate its performance on new, unseen data. 

 The test accuracy is calculated as the percentage of correctly predicted 

labels in the test dataset.  

3.2.8.3 Validation Loss: 

 During the training process, a model is typically trained on a training 

dataset, and its performance is evaluated on a separate validation dataset. The validation 

dataset is used to monitor the model's performance and to prevent overfitting, which 

occurs when a model performs well on the training data but poorly on new data. 

 Validation loss is computed by evaluating the model on the validation 

dataset using a loss function, such as mean squared error or cross-entropy. The 

validation loss is then used to adjust the model's parameters to improve its performance. 

3.2.8.4 Validation Accuracy: 

 During the training process, a model is typically trained on a training 

dataset, and its performance is evaluated on a separate validation dataset. The validation 

dataset is used to monitor the model's performance and to prevent overfitting, which 

occurs when a model performs well on the training data but poorly on new data. 

 Validation accuracy is computed by evaluating the model on the 

validation dataset and measuring the percentage of correct predictions.  

3.2.9 Train Dataset: 

  The training data is a subset of data used to teach a model to identify 

patterns and relationships between input and output variables. The training data is used 

to adjust the model's parameters so that it can make accurate predictions on new, unseen 

data. 
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3.2.10 Testing: 

 When it comes to Machine Learning models, the term "testing" typically refers 

to evaluating the accuracy or precision of the model. This is different from the use of 

the term in traditional software development. 
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CHAPTER 4 

Software Used 

4.1 Python 

  Python is a high-level, interpreted programming language that was first 

released in 1991 by Guido van Rossum. It is designed to be easy to read and write, 

making it a popular choice for beginners and experienced programmers alike. Python's 

syntax is simple and elegant, with an emphasis on readability and simplicity. 

One of the key features of Python is its extensive library of modules, which 

allow developers to perform a wide range of tasks without having to write code from 

scratch. Python is also known for its versatility, with applications ranging from web 

development and data analysis to scientific computing and machine learning. 

Python's popularity has grown steadily over the years, due in part to its active 

community of developers who have contributed to its open-source codebase. Today, 

Python is widely used in academia, industry, and government, and it is considered one 

of the most popular programming languages in the world. Python is supported on a 

wide range of platforms, including Windows, Linux, and macOS, and it has become a 

popular choice for scripting and automation tasks, as well as web development using 

frameworks like Django and Flask. With its powerful and flexible syntax, rich library 

of modules, and active community, Python continues to be a popular choice for 

developers and businesses alike. 

4.2 Jupyter NoteBook 

 Jupyter Notebook is an open-source web application that allows users to create 

and share documents containing live code, equations, visualizations, and narrative text. 

It supports over 40 programming languages, including Python, R, and Julia. 
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Jupyter Notebook provides an interactive computing environment, where users 

can write and execute code in cells. Each cell can contain code, markdown text, or raw 

text. The output of a code cell is displayed directly below the cell, allowing users to see 

the results of their code immediately. 

Jupyter Notebook also supports the creation of interactive visualizations, using 

libraries such as Matplotlib, Bokeh, and Plotly. Jupyter Notebook is widely used in data 

science and scientific computing, as it provides a powerful and flexible environment 

for data exploration, visualization, and analysis. Its interactive nature makes it ideal for 

rapid prototyping and experimentation, while its ability to combine code, data, and 

narrative text makes it an effective tool for communication and collaboration. 

4.3 Libraries 

4.3.1 Open Source-Computer Vision Library: 

 OpenCV is a vast open-source library for computer vision, image processing, 

and machine learning. Its applications are crucial in real-time operations for modern 

systems. It allows for the identification of human handwriting, faces, and objects in 

images and videos. In conjunction with other libraries, such as NumPy, Python can 

analyze the OpenCV array structure to process images. To identify image patterns and 

their distinct characteristics, vector space is used, and mathematical operations are 

carried out on these features. 

 The initial version of OpenCV was 1.0, and it is available under a BSD license, 

making it free for commercial and academic purposes. OpenCV has interfaces for Java, 

Python, C++, and C and is supported by various operating systems, including Mac OS, 

Windows, Linux, iOS, and Android. Its primary objective was to support real-time 

applications, which is why it is built with optimized C/C++ code to take advantage of 

multi-core processing. 

 OpenCV Functionality: 
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• Image and video input/output: OpenCV can read and write image and video 

files in various formats, such as JPEG, PNG, BMP, and MPEG. 

• Image processing: OpenCV provides a wide range of image processing 

functions such as filtering, thresholding, edge detection, morphology, and 

many more. 

• Feature detection and extraction: OpenCV includes algorithms for detecting 

and extracting various features from images, such as corners, blobs, and 

lines. 

• Object detection and recognition: OpenCV provides several object detection 

and recognition algorithms, such as face detection, pedestrian detection, and 

object recognition. 

 Applications of OpenCV:  

There are lots of applications which are solved using OpenCV, some of them 

are   listed below: 

• Object detection and recognition: OpenCV is often used for object 

detection and recognition in various fields such as security, surveillance, 

and robotics. For example, it can be used to detect faces, pedestrians, 

and vehicles in real-time video streams. 

• Medical imaging: OpenCV is used in medical imaging applications for 

tasks such as image segmentation, classification, and analysis. It can be 

used for applications such as tumour detection, image registration, and 

image-guided surgery. 

• Robotics: OpenCV is used in robotics applications for tasks such as 

object detection, navigation, and control. For example, it can be used to 

detect obstacles or track the position of a robot in a given environment. 

• Gaming: OpenCV can be used for gaming applications such as motion 

capture, gesture recognition, and facial expression recognition. 

4.3.2 Numerical Python : 
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 NumPy (short for Numerical Python) is a popular Python library used for 

numerical computing and scientific computing. It provides a powerful array computing 

functionality and a wide range of mathematical functions for working with arrays, 

matrices, and other numerical data structures. 

NumPy provides an array object that is like a list or a Python array, but with 

additional features such as fast and efficient indexing, slicing, and broadcasting. NumPy 

arrays are also homogenous, meaning that all elements in an array must have the same 

data type, which allows for more efficient memory allocation and computation. In 

addition to arrays, NumPy provides a wide range of mathematical functions for working 

with arrays, including basic arithmetic operations, linear algebra, Fourier transforms, 

random number generation, and more. It also integrates well with other scientific 

computing libraries such as SciPy, Matplotlib, and Pandas. 

4.3.3 Tensor Flow: 

 TensorFlow is an open-source software library initially created by the Google 

Brain Team, comprising engineers and researchers working within Google's Machine 

Intelligence research organization, to facilitate machine learning and deep neural 

network research. Despite its origins, TensorFlow's applicability transcends its initial 

purpose and is widely employed in various domains. Google released TensorFlow as an 

open-source software in November 2015. 

 TensorFlow's success stems from several factors, including its computational 

graph concept, automatic differentiation, and its adaptable Python API structure. These 

features enable programmers to tackle real-world problems with TensorFlow more 

easily. The unique problem-solving approach employed by TensorFlow's engine 

contributes significantly to its popularity, allowing for efficient resolution of machine 

learning problems. 

4.3.4 Keras: 

 Keras is an open-source neural network library written in Python that is designed 

to provide a simple and efficient way to build and train deep learning models. It was 
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developed by François Chollet and is now a part of the TensorFlow library. Keras is 

known for its user-friendliness, modular design, and flexibility. It is widely used by data 

scientists and machine learning practitioners. 

 Key features and concepts of Keras: 

• User-friendly API: Keras provides a high-level, easy-to-use API that 

abstracts away much of the complexity of deep learning. It allows users to 

quickly build and train models without needing to have an in-depth 

understanding of the underlying mathematics. 

• Modularity: Keras is designed with a modular architecture that makes it easy 

to build complex models. Models can be built using pre-built building 

blocks, called layers, that can be combined in various ways to create 

different architectures. 

• Compatibility with Python: Keras is built in Python, which means that it is 

compatible with many other Python libraries and tools commonly used in 

data science and machine learning. 

• Pre-trained models: Keras provides access to a number of pre-trained 

models that can be used for a variety of tasks, including image classification, 

object detection, and natural language processing. 

4.3.5 Matplotlib: 

 Matplotlib is a popular Python library used for data visualization. It provides a 

variety of tools for creating high-quality plots, graphs, and charts, allowing users to 

visualize and analyse data in a clear and concise manner. 

Matplotlib can be used to create a wide range of plots, including line plots, scatter 

plots, bar plots, histograms, heatmaps, and more. It provides a range of customization 

options for creating plots that meet specific requirements, including the ability to 

modify colours, fonts, labels, axes, and annotations. Matplotlib is an open-source 

library and is actively maintained and developed by a community of contributors. It is 

widely used in various fields, including scientific research, finance, engineering, and 

machine learning. 
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4.3.6 OS module in Python: 

 The OS module in Python provides a way to interact with the operating system 

on which the Python interpreter is running. It provides a way to access file and directory 

management functionality, system information, and process management. The module 

includes functions for creating, deleting, moving, and renaming files and directories, as 

well as executing shell commands, accessing environment variables, and creating child 

processes. The os.path submodule provides functions for working with file paths and 

manipulating file and directory names. The OS module is a powerful tool for interacting 

with the operating system from within a Python program. It allows developers to create 

scripts that can automate common tasks, such as file and directory management, system 

administration, and process control. 

 

The os module in Python provides several submodules that offer additional 

functionality for interacting with the operating system. Here are some of the key 

submodules of the os module: 

• os.path: This submodule provides functions for working with file paths and 

manipulating file and directory names. Some of the functions in this submodule 

include.  

• os.system: This submodule provides functions for executing shell commands 

from within a Python script. The os.system() function can be used to execute a 

command in the shell and return the output. 

• os.environ: This submodule provides access to the environment variables on the 

system. The os.environ dictionary contains key-value pairs for each 

environment variable. 

• os.fdopen: This submodule provides a way to open file descriptors using the file 

object interface. The os.fdopen() function takes a file descriptor and returns a 

file object that can be used for reading and writing. 
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4.3.7 Dlib: 

 Dlib is a popular C++ library for developing machine learning and computer 

vision applications. It is known for its high performance and flexibility and is widely 

used by researchers and developers in the field. dlib includes several pre-trained models 

for various tasks, such as face detection, facial landmark detection, object detection, 

and image segmentation. These models can be easily integrated into applications and 

used to quickly achieve state-of-the-art performance. In addition to pre-trained models, 

dlib provides tools for training custom models. These include support for various types 

of machine learning algorithms, such as SVMs, decision trees, and neural networks, as 

well as efficient optimization algorithms for training these models. 

 dlib also includes several utility classes and functions for working with images, 

matrices, and other data structures commonly used in machine learning and computer 

vision. It is designed to be portable across platforms and can be used on a variety of 

operating systems, including Windows, macOS, Linux, and Android. 

 Some of the main features of DLIB include: 

• Face detection and recognition: DLIB provides pre-trained models for 

detecting faces in images and videos, as well as models for recognizing 

individual faces. 

• Object detection: DLIB includes tools for training and using object 

detectors, which can be used to identify and locate objects of interest in 

images and videos. 

• Image segmentation: DLIB provides algorithms for segmenting images into 

different regions based on colour, texture, and other features. 

• Machine learning: DLIB includes tools for training and using various types 

of machine learning models, such as support vector machines (SVMs), 

decision trees, and deep neural networks. 
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CHAPTER 5 

Experimental Results 

Input: 

  The input for system is a human face image. The system has MRL eye dataset 

consisting of 80,000 cropped images of eye region, and the following are driver input 

images which were given to detection system. 

 

Figure 10 Driver Input images 

Output: 

 The input is captured through camera, then face tracking and detection is done 

through MC-KCF. Once face detection and image resizing have been carried out, the 

resulting images are as follows: 

 

Figure 11 Alert Images 

 

Figure 12 Drowsy images 
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From the above image’s features like eyes are extracted. The extracted features are 

passed through ResNet CNN and produce buzzer alert if the driver is in drowsy state. 

5.1 Results through live face tracking: 

5.1.1 Frames recognized as drowsy: 

 The system works by continuously analysing a stream of video input to detect 

signs of driver drowsiness. When the system detects drowsiness, it will highlight the 

driver's eyes using a red rectangle and emit a beep sound as an alert to make the driver 

aware of their drowsiness. The detection of drowsiness is achieved by utilizing a well-

trained ResNet Convolutional Neural Network (CNN) model. 

 

Figure 13 Person 1 in drowsy state 

 

Figure 14 Person 2 in drowsy state

 

 

Figure 15 Person 3 in drowsy state 

 

Figure 16 Person 4 in drowsy stat
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Figure 17 Person 5 in drowsy state 

By observing above figures in this section, the system detects eye region in whole face 

expression and as the eyes are closed, the detecting system alerts driver through buzzer 

sound. 

5.1.2 Frames recognised as not drowsy: 

 The system operates by continuously analysing a live video stream to determine 

if the driver is not drowsy. If the system detects that the driver is not drowsy, it will 

highlight their eyes using a green-coloured rectangle and will not generate an alert. The 

detection of driver drowsiness is accomplished using a well-trained ResNet 

Convolutional Neural Network (CNN) model. 

 

Figure 18 Person 1 in alert state 

 

Figure 19 Person 2 in alert state
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Figure 20 Person 3 in alert state 

 

Figure 21 Person 4 in alert state

 

 

Figure 22 Person 5 in alert state 

 By observing above figures in this section, the system detects eye region in whole 

face expression and as the eyes are open, the detecting system states that the driver is 

in active mode i.e., eyes are not closed. 

Results on test data: 

Test loss: 0.0183 

Test accuracy: 0.9817 

Validation loss:0.0167 

Validation accuracy:0.9833 

 

 In general, test loss is calculated by evaluating dataset which was not used during 

training. A lower test loss indicates that the model is more accurate and better at 

generalizing to new data. The test accuracy is calculated as the percentage of correctly 
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predicted labels in the test dataset. Validation loss is computed by evaluating the model 

on the validation dataset using a loss function, such as mean squared error or cross-

entropy. The goal of training a model is to minimize the validation loss, which indicates 

that the model is becoming more accurate at predicting outputs for new, unseen data. 

 Validation accuracy is computed by evaluating the model on the validation dataset 

and measuring the percentage of correct predictions. The goal of training a model is to 

maximize the validation accuracy, minimize the validation loss, which indicates that 

the model is becoming more accurate at predicting outputs for new, unseen data. 

From the above test results, model contains minimum test loss and validation loss and 

maximum validation accuracy, which states that model is well trained and produces 

better results than previous models in detecting drowsiness. 
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CHAPTER 6 

Conclusion and Future Scope 

6.1 Conclusion 

 This project proposes a new method for driver drowsiness detection using a 

combination of MC-KCF and ResNet CNN. The proposed method utilizes the 

advantages of both methods to track eye movements using MC-KCF and classify the 

driver's face to determine the drowsiness through ResNet CNN in real-time. 

 Experimental results demonstrated that the proposed method produced high 

accuracy rates in detecting driver drowsiness based on testing results and through 

Resnet CNN model, when driver is in drowsy state upto 1sec, the alarm sound is 

produced and alerts the driver stating that he/she is in drowsy state. The proposed 

method has the potential to be used in various settings, including in-vehicle systems, to 

provide real-time feedback to drivers and prevent accidents caused by driver fatigue. 

 This project also contributes to the field of driver drowsiness detection by 

providing an overview of existing methods. However, there are few limitations to the 

proposed algorithm, such as camera placement and light conditions, variability in eye 

movements, computational complexity but the proposed algorithm work can be 

extended to other related fields, such as human-computer interaction, facial expression 

recognition and emotion detection. 

 Thus, in this project, algorithm for fatigue detection using MC-KCF and ResNet 

CNN is successfully designed and executed. Overall, this project paper provides a 

promising approach to driver drowsiness detection that can help improve road safety 

and prevent accidents caused by driver fatigue. 
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6.2 Future Scope 

 The future scope for driver drowsiness detection using MC-KCF and Residual 

Neural Networks is vast and promising. Here are a few potential areas of development 

and improvement for this project: 

 Real-time application: Currently, the implementation of this project requires 

processing video frames offline, which may not be practical for real-time application. 

Future work could focus on optimizing the algorithms and hardware to enable real-time 

processing of video streams, which would make the system more practical and effective 

for real-world scenarios. 

 Multi-modal input: While the current implementation of the project relies solely 

on visual cues to detect drowsiness, incorporating other modalities, such as audio or 

physiological signals, could improve the accuracy and robustness of the system. 

 Personalization: People exhibit different signs of drowsiness, and some 

individuals may exhibit unique cues that are not captured by the current algorithm. 

Future work could explore how to personalize the drowsiness detection algorithm to 

individual drivers to improve its accuracy and effectiveness. 
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