
DRIVER DROWSINESS-DETECTION SYSTEM BASED

ON TRANSFER LEARNING AND MC-KCF

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

H. Dinesh (319126512085) A. Pavan Kalyan (319126512067)

V. Shanmukha Raju (319126512126) Ch. Kumar Charukesh (319126512076)

Under the guidance of

Mrs V. Shireesha

Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)
(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC)

Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)

2022-2023

ii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide V. Shireesha, Assistant

professor, Department of Electronics and Communication Engineering, ANITS, for her

guidance with unsurpassed knowledge and immense encouragement. We are grateful to

Dr. B. Jagadeesh, Head of the Department, Electronics and Communication

Engineering, for providing us with the required facilities for the completion of the

project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose

suggestions during reviews helped us in accomplishment of our project. We would like

to thank all non-teaching staff of the Department of ECE, ANITS for providing great

assistance in accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last, but not the least, we thank everyone for

supporting us directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

 H. Dinesh (319126512085)

 A. Pavan Kalyan (319126512067)

 V. Shanmukha Raju (319126512126)

 Ch. Kumar Charukesh (319126512076)

iii

ABSTRACT

The driver fatigue is an important issue in many vehicle accidents. According

to the National Highway Safety Administration, drowsy driving causes more than

100,000 crashes, 71,000 injuries, and 1,550 death toll each year in India.

 Earlier approach normally based on DriCare technique, detects the driver’s

fatigue status, such as yawning, blinking, and duration of eye closure, using video

images, without equipping their bodies with devices. This approach uses KCF

(Kernelized Correlation Filter) and CNN (Convolution neural network) algorithms.

The proposed work is based on the issues related to driver drowsiness detection

and alert system. The proposed algorithm uses the features of deep convolutional neural

network-like RESNET (Residual neural network) and MC-KCF (Multi Convolution

neural network-KCF). These techniques are used to detect driver drowsiness by

measuring yawning, head position and eye rotation.

Keywords: Deep Convolution Neural network, fatigue detection, face tracking,

Drowsiness Detection, feature location, ResNet, MC-KCF.

iv

CONTENTS

ACKNOWLEDGEMENT ii

ABSTRACT iii

LIST OF FIGURES vii

CHAPTER 1: Introduction 1

1.1 Introduction 1

1.2 Problem Statement 1

1.3 Project Requirements 2

1.3.1 Software 2

1.3.2 Hardware 2

CHAPTER 2: LITERATURE SURVEY 3

2.1 Drowsiness Detection System Using Physiological Signals 3

2.2 Drowsiness Detection with OpenCV using EAR. 6

2.3 Driver Drowsiness detection using ANN image processing 8

CHAPTER 3: Methodology 10

3.1 Proposed Methodology 10

3.1.1 Existing System 10

3.1.2 Proposed System 10

3.2 Proposed Techniques: 11

3.2.1 Artificial Intelligence (A.I) 11

3.2.2 Machine Learning 13

3.2.3 Deep Learning 13

3.2.4 Neural Networks 14

3.2.5 Convolution Neural Network (CNN) 15

3.2.5.1 Convolutional Layer 16

3.2.5.2 Pooling Layer 18

3.2.5.2.1 Max Pooling 18

3.2.5.2.2 Average Pooling 18

v

3.2.5.2.3 Global Pooling 19

3.2.5.3 Fully Connected Layer 19

3.2.5.4 Dropout Layer 20

3.2.5.5 RESNET 20

3.2.5.5.1 Residual Blocks 20

3.2.5.5.2 Architecture Of RESNET 21

3.2.5.5.3 Using ResNet with Keras 23

3.2.6 Back Propagation 23

3.2.7 Activation Functions 24

3.2.8 Training 24

3.2.8.1 Test Loss 25

3.2.8.2 Test Accuracy 25

3.2.8.3 Validation Loss 26

3.2.8.4 Validation Accuracy 26

3.2.9 Train Dataset 26

3.2.10 Testing 27

CHAPTER 4: Software Used 28

4.1 Python 28

4.2 Jupyter NoteBook 28

4.3 Libraries 29

4.3.1 Open Source-Computer Vision Library 29

4.3.2 Numerical Python 30

4.3.3 Tensor Flow 31

4.3.4 Keras 31

4.3.5 Matplotlib 32

4.3.6 OS module in Python 33

4.3.7 Dlib 34

CHAPTER 5: Experimental Results 35

5.1 Results through live face tracking 36

5.1.1 Frames recognized as drowsy 36

5.1.2 Frames recognised as not drowsy 37

vi

CHAPTER 6: Conclusion and Future Scope 40

6.1 Conclusion 40

6.2 Future Scope 41

REFERENCES 42

vii

LIST OF FIGURES

Figure 1 Venn Diagram of A.I 12

Figure 2 Layers in Neural Network 15

Figure 3 Operation of Convolution 17

Figure 4 Stide 17

Figure 5 Operation of Max Pooling 18

Figure 6 Operation of Average Pooling 19

Figure 7 Residual Blocks 21

Figure 8 Architecture of ResNet 22

Figure 9 Back Propogation 24

Figure 10 Driver Input images 35

Figure 11 Alert Images 35

Figure 12 Drowsy images 35

Figure 13 Person 1 in drowsy state 36

Figure 14 Person 2 in drowsy state 36

Figure 15 Person 3 in drowsy state 36

Figure 16 Person 4 in drowsy state 36

Figure 17 Person 5 in drowsy state 37

Figure 18 Person 1 in alert state 37

Figure 19 Person 2 in alert state 37

Figure 20 Person 3 in alert state 38

Figure 21 Person 4 in alert state 38

Figure 22 Person 5 in alert state 38

viii

LIST OF ABBREVIATIONS

AI : Artificial Intelligence

BSD : Berkely Source Distribution

CNN : Convolution Neural Network

CUDA : Computer Unified Device Architecture

EAR : Eye Aspect Ratio

ECG : Electrocardiography

EEG : Electro Encephalogram

EOG : Electrooculography

FC : Fully-Connected

FFT : Fast Fourier Transform

GB : Giga Byte

GPU : Graphics processor unit

GUI : Graphic User Interface

HF : High Frequency

HRV : Heart Rate Variability

I/O : Input/Output

IDE : Integrated Development Environment

IT : Information Technology

KCF : Kernelized Correlation Filter

LF : Low Frequency

LSST : Large Synoptic Survey Telescope

MATLAB : Matrix Laboratory

MEMS : Micro-Electromechanical Systems

OS : Operating System

PPG : Plethysmo Graphy

PyPI : Python Package Index

ix

RBF : Radial Basic Function

ReLU : Rectified Linera Activation unit

RESNET : Residual Neural Network

ROC : Receiver Operation Curve

SVM : Support Vector Machine

TV : Television

URL : Unifrom Resource Locator

USB : Universal Serial Bus

VGG : Visual Geometry Group

YawDD : Yawning Detection Dataset

1

CHAPTER 1

Introduction

1.1 Introduction

 Around 1.3 million individuals pass away each year due to car accidents, which

are primarily caused by driver distraction and drowsiness. Many individuals travel long

distances on highways, which can lead to fatigue and stress. Drowsiness can arise

unexpectedly, resulting from sleep disorders, medication, or for instance, boredom can

arise while driving for long periods. Therefore, drowsiness can create hazardous

situations and elevate the likelihood of accidents.

 Given the circumstances, it is crucial to employ modern technologies to develop

and construct systems capable of monitoring drivers and assessing their attentiveness

throughout the entirety of their time on the road.

 Project team has developed a solution to prevent such accidents. The system

involves utilizing a camera to capture the user's visual features, with the use of face

detection and CNN techniques to identify any signs of drowsiness in the driver. When

drowsiness is detected, an alarm will sound to alert the driver, prompting them to take

precautionary measures. The detection of driver drowsiness is instrumental in reducing

the number of fatalities caused by traffic accidents.

1.2 Problem Statement

 Road accidents caused by human errors are responsible for numerous fatalities

and injuries worldwide. The primary reason behind such accidents is the driver's

drowsiness, which could result from sleep deprivation or prolonged driving hours. To

address this issue, it is imperative to develop a system that leverages the latest available

technologies to minimize the likelihood of accidents. The main objective of this system

2

is to create a model that can issue an alert in case the driver shows signs of drowsiness.

This alert will help the driver become aware of their condition and take the necessary

measures to prevent an accident.

1.3 Project Requirements

1.3.1 Software

Software required are:

• Windows, Linux, MacOS used for operating system.

• Python 3.10(recent version) is used as language.

• Python IDE, Jupiter Notebook used as IDE’s.

1.3.2 Hardware

Minimum Hardware required are:

• High computational processor

• Minimum 4 GB RAM

• Webcam which supports night vision

• Alarm

3

CHAPTER 2

LITERATURE SURVEY

2.1 Drowsiness Detection System Using Physiological Signals

Author: T. S. Yengatiwar, Trupti K. Dange.

Publication year: 2013

 Drowsiness can be detected by measuring physiological parameters like heart

rate, pulse rate, breathing rate, respiratory rate, and body temperature are considered

more precise and dependable in identifying drowsiness since they exhibit measurable

physiological changes directly related to the driver's physical condition. When a person

becomes drowsy, their physiological parameters tend to alter, for instance, a drop in

blood pressure, heart rate, and body temperature. Drowsiness detection systems that

rely on these physiological indicators can identify such changes and caution the driver

when they are at risk of falling asleep. However, since these systems necessitate

electrodes to be attached to the driver's body, they are considered invasive. Here is a

compilation of drowsiness detection systems that rely on physiological conditions.

2.1.1. EEG-BASED DRIVER FATIGUE DETECTION

 A system has been suggested for identifying driver fatigue and exhaustion

prevent Car accidents resulting from drivers who were sleepy or drowsy. This system

uses Electroencephalogram (EEG) signals to determine the degree of sleepiness or

drowsiness experienced by a driver. The system first identifies an index that

corresponds to various levels of drowsiness. A cheap neuro signal acquisition device

with a single electrode is used to obtain the EEG signal from the driver. A collection of

data designed for simulated car drivers experiencing different levels of drowsiness was

collected locally to evaluate the system. The findings indicated that the system proposed

was successful in detecting fatigue in all the subjects.

4

2.1.2. PULSE SENSOR METHOD

 Previous studies have primarily focused on using drivers' physical conditions to

detect drowsiness. To address this issue, Rahim developed a system that uses infrared

heart rate or pulse sensors to detect drowsy drivers. The pulse sensor gauges the heart's

pulse rate by detecting the driver's finger or hand. By detecting the quantity of blood

circulating through the finger, the sensor can determine the amount of oxygen in the

blood, causing reflecting infrared light and transmit the data to the Arduino

microcontroller. The variation in oxygen levels is then processed by HRV frequency

domain software to visualize the driver's heart pulse rate. The results of the experiment

showed that the LF/HF As drivers shift from being alerted to feeling drowsy, the ratio

of oxygen tends to decline. By issuing timely warnings, numerous car accidents can be

averted.

2.1.3. WEARABLE DRIVER DROWSINESS DETECTION SYSTEM

 In the past, Applications designed for mobile devices have been created to

identify and detect driver drowsiness. However, these applications can distract drivers

and lead to accidents. To address this issue, Lenget developed a drowsiness detection

system in the shape of a custom-designed wristband that can be worn has been

developed, featuring a PPG signal and galvanic skin response sensor. The information

gathered by these sensors is sent to a mobile device, which functions as the primary

assessment unit. Motion sensors in the mobile device analyse the data, and five features

(heart rate, breathing rate, level of stress, variability in pulse rate, and the count of

adjustments made) are extracted for computation. These characteristics are

subsequently employed as calculation parameters for an SVM classifier, which is

utilized to assess the driver's level of drowsiness. The findings of the experiment

indicated an accuracy up to 98.02% for the proposed system. In the event of drowsiness,

the mobile device generates a warning system that makes use of both visual and

vibrational alerts to notify the driver.

5

2.1.4. WIRELESS WEARABLES METHOD

 Warwick has proposed a drowsiness detection system that utilizes a wearable

biosensor known as Bio-harness to reduce the likelihood of road accidents. The system

is comprised of two stages. During the first stage, the Bio-harness gathers the driver's

physiological data, such as ECG, heart rate, and posture, among other metrics. This data

is then analysed to determine key parameters linked to drowsiness. In the second stage,

a drowsiness detection algorithm is established, and a mobile application is developed

to warn drowsy drivers.

6

2.2 Drowsiness Detection with OpenCV using EAR.

Author: Adrian Rosebrock

Publication year: 2017

 The paper proposes an algorithm that can detect eye blinks in real-time using

video footage from a standard camera. The algorithm utilizes this paper proposes the

use of landmark detectors that are trained on datasets containing images of people in

everyday settings (in-the-wild datasets) for the purpose of detecting eye blinks in real-

time from a video sequence captured by a standard camera, which are highly robust

against different factors such as head orientation, varying illumination, and facial

expressions. These detectors can precisely detect facial landmarks and the algorithm is

designed to estimate the degree of eye opening, which is essential for detecting eye

blinks accurately.

 Several techniques have been proposed for automatic identification of eye

blinks in video sequences, and some of these methods depend on analysing the motion

within the eye region. Various techniques have been proposed to automatically identify

eye blinks in video sequences, including methods that rely on analysing the motion in

the eye region. Typically, these methods involve detecting the face and eyes using a

detector such as the Viola-Jones algorithm. Then, the movement in the eye area is

evaluated using techniques such as estimating optical flow, sparse tracking, or frame-

to-frame intensity differences with adaptive thresholding. Finally, the algorithm

determines whether the eyes are covered by eyelids or not.

 At present, there are facial landmark detectors available that can accurately

capture various key points on a human face image, including the corners of the eyes

and the eyelids, with high reliability in real-time. These landmark detectors are

advanced and use a regression approach, where a mapping is learned from an image to

the positions of the landmarks or another landmark parametrization. They are trained

on datasets that contain images taken in diverse settings, which makes them robust to

7

challenges like changes in illumination, various facial expressions, and moderate non-

frontal head rotations.

Proposed method:

 To blink is to quickly shut and then reopen one's eyes., and the pattern of blinks

varies slightly from person to person, including differences in speed, degree of eye

squeezing, and blink duration. Typically, an eye blink lasts anywhere between 100 to

400 milliseconds. In this paper, it is proposed to use advanced facial landmark detectors

to locate the eyes and define the shape of the eyelids in an image. Based on the

landmarks detected, the eye aspect ratio (EAR) is computed as an indicator of the

degree of eye-opening. However, since the EAR value in each frame may not be able

to accurately detect eye blinks, a classifier is trained to analyse a longer sequence of

frames. When an eye is open, the EAR value remains relatively stable, but it gradually

decreases towards zero as the eye closes.

 The article introduced an algorithm capable of detecting eye blinks in real-time.

It was shown that facial landmark detectors based on regression techniques can

accurately estimate the degree of eye openness. These detectors are also highly robust

against various challenges, such as low image quality (mostly due to low resolution)

and real-world factors like non-frontal head positions, poor lighting, and facial

expressions. The proposed approach, which employs a Support Vector Machine (SVM)

and considers a temporal window of the eye aspect ratio (EAR), performs better than

the EAR thresholding method.

8

2.3 Driver Drowsiness detection using ANN image processing

Authors: S. Moca1, T. Vesselenyi1, B. Tătaru1, A. Rus1, T. Mitran1.

Publication year: 2017.

 This study aimed to explore the feasibility of developing a drowsiness detection

system for car drivers using three methods: processing of EEG and EOG signals, and

analysis of driver images based on eye state (open or closed) classification. The EEG

and EOG methods are used to measure brain activity and signals from the muscles

responsible for eye movement, respectively. On the other hand, the eye image analysis

method involves observing the state of the eye, whether it is open or closed.

 The EEG and EOG sensors Electrodes need to be positioned on specific parts

of the body and be connected through conductive gel or wires, causing discomfort to

the user. However, advancements the problems associated with traditional EEG

methods may be addressed by utilizing advancements in materials science and MEMS

technology, including the application of dry electrodes for EEG.

 The advancement of EEG technology has been largely fuelled by the

development of brain-computer interfaces for various applications, including devices

to assist people with disabilities. One of the primary goals of recent EEG research is to

differentiate between low and high alpha rhythm peaks, which can be used to determine

a person's level of alertness. The study involved using EOG signals from three sensors

(EOG1, EOG2, EOG3) to identify four distinct signal types after pre-processing. By

combining these signal types, researchers were able to determine the direction of eye

movements (upward, downward, leftward, and rightward), providing the necessary

information to differentiate between alert and drowsy states.

The researchers used MATLAB Neural Network Toolbox and Deep Learning

Toolbox's autoencoder module to determine if these tools could be used to classify

driver drowsiness based on images. They acquired 200 images of a driver during normal

driving, with half showing open or half-open eyes and the other half showing closed

9

eyes. The hypothesis was that closed eyes would indicate drowsiness, while open or

half-open eyes would indicate an alert state. They used a one-layer artificial neural

network for analysis.

10

CHAPTER 3

Methodology

3.1 Proposed Methodology

3.1.1 Existing System:

There are several existing systems for detecting driver drowsiness, and they are:

• Various technologies can detect drowsiness in drivers to prevent accidents.

Video-based systems use cameras to monitor the driver's face and identify signs

of drowsiness such as drooping eyelids, head nodding, or yawning.

• Infrared-based systems use infrared sensors to detect changes in skin

temperature, which can indicate drowsiness.

• EEG-based systems utilize electrodes on the driver's scalp to measure brain

activity and identify changes in brain waves that correspond to drowsiness.

• Wearable devices that monitor changes in heart rate, breathing, and movement

can also indicate drowsiness.

• Steering-based systems use sensors in the steering wheel to detect changes in

grip strength or steering behaviour that can indicate drowsiness.

3.1.2 Proposed System:

In this system, instead of existing systems, an alternative approach was used:

• Artificial intelligence and machine learning algorithms are utilized in machine

learning-based systems to detect drowsiness. These systems use data from

multiple sources, such as video and sensor data, to identify patterns and

indications of drowsiness.

 A Convolutional Neural Network (CNN) is the model used in this

scenario, which is frequently used for image classification and multi-class classification

of images.

11

 A Convolutional Neural Network (CNN) is the model used in this

scenario, which is frequently used for image classification and multi-class classification

of images. The CNN comprises convolution layers that contain adaptable filters. The

filters are moved across the input in a forward propagation process, with each

movement known as a stride. The CNN model enhances the accuracy of the system.

 A camera captures continuous images of the driver's face, and a face detection

process identifies the driver's face. The driver's face is then classified as either drowsy

or not drowsy using a CNN-based classification model. The KCF and RESNET CNN

are utilized to construct the classification model.

3.2 Proposed Techniques:

3.2.1 Artificial Intelligence (A.I):

Artificial Intelligence (AI) is a field of computer science that aims to create

intelligent machines that can learn from experience, reason, and make decisions based

on data. AI has made significant progress in recent years and is now being used in a

wide range of applications, from self-driving cars to medical diagnosis and treatment.

There are different types of AI, including rule-based or symbolic AI, machine

learning, and deep learning. Rule-based or symbolic AI uses pre-defined rules and logic

to make decisions based on a set of if-then statements. Machine learning is a type of AI

that allows machines to learn from data without being explicitly programmed. It uses

algorithms to identify patterns in data and make predictions based on those patterns.

Deep learning is a type of machine learning that uses neural networks to simulate the

way the human brain works. It can process vast amounts of data and make predictions

with high accuracy.

AI is used in many applications, including natural language processing (NLP),

computer vision, robotics, healthcare, and finance. In natural language processing, AI

is used to analyse and understand human language, enabling machines to interact with

humans more effectively. In computer vision, AI is used to analyse images and videos,

12

allowing machines to recognize and identify objects, people, and other visual

information. In robotics, AI is used to create intelligent robots that can perform tasks

autonomously. In healthcare, AI is used to analyse medical data and make predictions

about diseases, allowing doctors to provide better diagnoses and treatments. In finance,

AI is used to analyse financial data and make predictions about markets, allowing

investors to make better decisions.

Figure 1 Venn Diagram of A.I

13

3.2.2 Machine Learning:

 Machine learning is a subset of artificial intelligence (AI) that allows computer

systems to automatically learn and enhance their performance by learning from

experience without the need for explicit programming. It is a field of computer science

that involves developing computer programs that utilize algorithms and statistical

models to recognize and learn patterns from data. In recent years, significant progress

has been made in this field, and the main aim of machine learning is to create programs

that can access data and use it to improve their performance autonomously. Although

there are various machine learning algorithms available, currently the three primary

techniques being used are supervised, unsupervised, and reinforcement learning.

 Although there are various types of machine learning algorithms that are utilized

for use-cases, currently, the three primary techniques being used are:

• Supervised ML Algorithm

• Unsupervised ML Algorithm Reinforcement

• ML Algorithm

 Out of the various types of machine learning algorithms available, the one

utilized in this system is a supervised machine learning algorithm.

3.2.3 Deep Learning:

 Deep learning is a form of artificial intelligence that emulates the human brain's

ability to analyse data and detect patterns to support decision-making. It is a subdivision

of machine learning in AI that employs networks capable of unsupervised learning from

unstructured or unlabelled data. This technique is also known as deep neural learning

or deep neural networks.

 Deep learning is a machine learning technique that uses complex algorithms

capable of processing and making decisions based on unstructured data without

supervision. This approach enables deep learning systems to recognize patterns and

carry out tasks such as object and speech recognition, and language translation.

14

 Deep learning is a subfield of artificial intelligence that emulates the way human

brains process information to perform various tasks, including speech recognition,

object detection, language translation, and decision-making. Unlike traditional machine

learning methods, deep learning can learn autonomously without human intervention

and can handle unstructured and unlabelled data. This technology has diverse

applications, such as preventing fraud and money laundering, among other use cases.

3.2.4 Neural Networks:

 Neural networks are artificial systems that are modelled after the structure

and function of biological neural networks. These networks are capable of learning and

adapting to new information without the need for explicit instructions. Instead, they

analyse datasets and examples to identify patterns and relationships on their own.

 A neural network is made up of various components such as neurons,

connections, biases, weights, a propagation function, and a learning rule. The neurons

receive input from previous neurons, and each has an activation function, threshold,

and output function. The connections between neurons have weights and biases, which

control how information is passed between them. The propagation function calculates

the input and output of each neuron based on the function of the preceding neurons and

their corresponding weights. The learning rule is responsible for adjusting the weights

and thresholds of the network's variables.

 In neural networks, units across multiple layers are connected to one another,

with each connection carrying a weight that determines the impact of one unit on the

other. The network receives data at the input layer, which is then transmitted through

various layers before producing the final output at the output layer. Along the way, the

network learns from the data and gains a deeper understanding of it, allowing it to make

accurate predictions or classifications.

15

Figure 2 Layers in Neural Network

3.2.5 Convolution Neural Network (CNN):

 A Convolutional Neural Network (ConvNet/CNN) is a type of Deep Learning

algorithm that can analyse an image input and assign significance to different features

or objects within the image using learnable weights and biases. Unlike other

classification methods, ConvNets require less pre-processing. In traditional techniques,

filters are manually designed, whereas a ConvNet can learn these filters with enough

training.

 A Convolutional Neural Network (ConvNet/CNN) can effectively capture the

spatial and temporal connections within an image by using appropriate filters. Its

structure allows for better fitting of the image dataset by reducing the number of

parameters and reusing weights. In simpler terms, the network can be trained to

comprehend the complexity of the image more accurately.

 The term "Convolution" in Convolutional Neural Network (CNN) refers to a

specific type of linear operation called convolution in mathematics. Convolution is

when two functions are multiplied together to produce a third function that shows how

one function changes the shape of the other. In simpler terms, in CNNs, two matrix

representations of images are multiplied to create an output that extracts feature from

the image.

16

3.2.5.1 Convolutional Layer:

 In neural networks, a convolution layer is a type of layer that performs the

convolution operation on input data. It is typically used in image recognition and

computer vision tasks.

The convolution layer consists of a set of filters, also called kernels or feature

maps, that slide over the input data and perform the convolution operation. Each filter

detects a specific feature or pattern in the input data, such as edges or corners. The

output of the convolution layer is a set of feature maps, where each map represents the

response of one filter to the input data. The feature maps are typically down sampled

using a pooling operation, such as max pooling or average pooling, to reduce their size

and computational complexity. The parameters of the convolution layer include the size

of the filters, the number of filters, and the padding and stride values used during the

convolution operation. These parameters are learned during training using

backpropagation, allowing the network to learn the best set of filters for a given task.

The Convolution Operation

 The convolution operation is a mathematical operation that is commonly used

in signal processing and image processing. In the context of neural networks,

convolution is used to extract features from input data, such as images or audio signals.

The convolution operation involves sliding a small matrix, called a kernel or

filter, over the input data. At each position of the kernel, the values of the kernel and

the corresponding values of the input data are multiplied together and then summed.

The result is a single output value, which represents the degree of similarity between

the input data and the kernel at that position. The process of sliding the kernel over the

input data is repeated for every position in the input data, resulting in a new output data

structure. The size of the output data structure is typically smaller than the input data

structure, depending on the size of the kernel and the amount of padding used.

17

Figure 3 Operation of Convolution

Stride

 Stride refers to the number of pixels shifts that a filter makes across the input

matrix. The filter moves from left to right across the width of the image using a specified

stride value. Once the filter reaches the end of the row, it moves down to the beginning

of the image (left) with the same stride value and repeats the process until it has

traversed the entire image. If the stride value is 1, the filters move one pixel at a time.

If the stride value is 2, the filters move two pixels at a time. The diagram below

illustrates how convolution operates with a stride value of 2.

Figure 4 Stide

18

3.2.5.2 Pooling Layer:

 A pooling layer is a common layer in Convolutional Neural Networks (CNNs)

that is typically inserted after a convolutional layer. Its main function is to reduce the

spatial dimensions of the output feature maps generated by the convolutional layer

while retaining the important features learned by the filters. There are two main types

of pooling layers: average pooling and max pooling.

3.2.5.2.1 Max Pooling:

 In max pooling, the input feature map is divided into non-overlapping regions

or windows, typically of size 2x2 or 3x3. For each window, the maximum value within

that region is selected and placed in the output feature map, while the other values are

discarded. This process is repeated for each window, effectively down sampling the

feature map and retaining only the strongest activations.

Figure 5 Operation of Max Pooling

3.2.5.2.2 Average Pooling:

 In average pooling, the input feature map is divided into non-overlapping

regions or windows, typically of size 2x2 or 3x3. For each window, the average value

of all the activations within that region is computed and placed in the output feature

map. This process is repeated for each window, effectively down sampling the feature

map while retaining information about the distribution of activations within each

region.

19

Figure 6 Operation of Average Pooling

3.2.5.2.3 Global Pooling:

 Global pooling is a specific type of pooling layer where the entire feature map

is reduced to a single value, instead of dividing the feature map into regions. The most

common type of global pooling is global average pooling, where the average value of

all the activations in the feature map is computed and placed in the output. Global

pooling is often used in the final layers of a CNN for classification tasks, where the

output of the network needs to be a fixed-size vector representing the probability

distribution over the possible classes.

3.2.5.3 Fully Connected Layer:

 In deep learning, a fully connected layer (FC layer) is a type of layer in a neural

network where all the neurons in one layer are connected to all the neurons in the next

layer. This means that every input neuron is connected to every output neuron, and each

connection has a corresponding weight and bias.

A fully connected layer is also known as a dense layer or a linear layer. It is

typically used as the last layer in a neural network, where it performs the final

classification or regression of the input data. The output of a fully connected layer is

calculated by taking a weighted sum of the inputs and adding a bias term, followed by

an activation function. The weights and biases in the fully connected layer are learned

through a process called backpropagation, which is a type of supervised learning

algorithm.

20

3.2.5.4 Dropout Layer:

 Dropout is a regularization technique used in Neural Networks to prevent

overfitting. It is implemented as a layer in the network architecture, called the dropout

layer.

The dropout layer randomly selects a subset of neurons in the previous layer

and sets their outputs to zero during training. This means that the information flow

through those neurons is temporarily removed from the network, and the remaining

neurons must learn to work together to compensate for the missing information. The

dropout layer is applied during the training phase only, and the full set of neurons is

used during testing.

3.2.5.5 RESNET

 ResNet (short for "Residual Network") is a type of deep neural network

architecture that was introduced in 2015 by Microsoft Research. It was designed to

address the problem of vanishing gradients in deep neural networks, which can make it

difficult for the network to learn effectively.

The key idea behind ResNet is the use of residual connections, which allow the

network to "skip" over layers and make it easier for gradients to flow back through the

network during training. In a standard neural network, each layer applies a set of

transformations to the input, but in a ResNet, some of the layers have a "shortcut"

connection that adds the input to the output of the layer. This creates a "residual" that

can be passed forward to the next layer, allowing the network to learn more complex

and deeper representations.

3.2.5.5.1 Residual Blocks:

 A Residual Block is the fundamental building block of a Residual

Network (ResNet) architecture. It consists of one or more convolutional layers,

followed by a set of shortcut connections that allow the network to bypass one or more

layers and pass information directly from one layer to another.

21

Figure 7 Residual Blocks

 The shortcut connection in a Residual Block is a skip connection that

adds the output of one or more layers to the output of the block. The idea behind this is

that if the input of a layer can be represented by the sum of its output and the input to

the layer, then the layer should learn a residual mapping instead of a direct mapping.

By doing so, the network can learn more efficient and accurate representations, as it is

easier for the network to learn the difference between the output and input rather than

learning the direct mapping.

The residual block has been shown to be highly effective in enabling the training of

very deep neural networks. By adding shortcut connections between the layers, the

gradient can flow more easily through the network during backpropagation, which

reduces the vanishing gradients problem and enables the training of deeper networks.

3.2.5.5.2 Architecture Of RESNET:

 The architecture of a 34-layer plain network is based on VGG-19, with the

addition of skip connections or shortcut connections. These connections are

implemented through residual blocks, which convert the architecture into a residual

network. A diagram of this can be seen in the figure below.

22

Figure 8 Architecture of ResNet

23

3.2.5.5.3 Using ResNet with Keras:

 Keras is a deep-learning library that is available for free and can be used on top

of TensorFlow. Within Keras, there is a feature called Keras Applications, which offers

different versions of ResNet.

• ResNet50

• ResNet50V2

• ResNet101

• ResNet101V2

• ResNet152

• ResNet152V2

3.2.6 Back Propagation:

Backpropagation is a widely used algorithm for training artificial neural

networks. It is an optimization algorithm that calculates the gradients of the loss

function with respect to the weights of the network, allowing the weights to be updated

in the direction that minimizes the loss.

The backpropagation algorithm works by first propagating the input forward

through the network, calculating the output of each neuron, and finally calculating the

loss between the predicted output and the actual output. It then propagates the error

back through the network, calculating the gradient of the loss with respect to each

weight in the network. This is done by applying the chain rule of calculus to calculate

the derivative of the loss with respect to each intermediate output in the network, and

then using these derivatives to calculate the derivative of the loss with respect to each

weight. Once the gradients have been calculated, they are used to update the weights of

the network using an optimization algorithm such as gradient descent. The optimization

algorithm iteratively updates the weights in the direction that reduces the loss function.

24

Figure 9 Back Propogation

3.2.7 Activation Functions:

 Activation functions are a key component of artificial neural networks, used to

introduce non-linearity into the output of a neuron. They are applied to the weighted

sum of the inputs and bias of a neuron to produce its output. The choice of activation

function has a significant impact on the performance and efficiency of a neural network.

There are several types of activation functions, including:

1. Sigmoid function

2. Rectified Linear Unit (ReLU) function.

3. Hyperbolic Tangent (tanh) function

4. SoftMax function

3.2.8 Training:

 Deep learning neural networks are designed to learn how to map inputs to

outputs. This is accomplished by adjusting the weights of the network in response to

the errors made by the model on the training dataset. These adjustments are made

continuously to minimize the error until the learning process either comes to a stop or

an acceptable level of accuracy is achieved. In other words, the goal of the network is

to continually refine its mapping function to produce more accurate and precise results.

25

 The optimization problem in deep learning neural networks is typically solved

using the stochastic gradient descent algorithm. This algorithm utilizes the

backpropagation algorithm to update the model's parameters in each iteration. In other

words, the stochastic gradient descent algorithm is responsible for adjusting the weights

of the network based on the errors calculated during the backpropagation process.

 A neural network model learns how to map a particular set of input variables to

the output variable using examples. The goal is to ensure that this mapping works well

not only on the training dataset but also on new, unseen examples. This ability to

function effectively on specific as well as new examples is known as the model's ability

to generalize. Essentially, the model must be able to apply what it has learned to new,

unseen data while still producing accurate results.

• Loss function: This is a function used to assess the model's performance

on the training dataset, based on a particular set of weights.

• Epochs: The number of times the model goes through the entire training

dataset before the training process is stopped.

3.2.8.1 Test Loss:

 Test loss is a metric that is commonly used in machine learning to

evaluate the performance of a trained model on a dataset that was not used during the

training process. It measures the difference between the predicted outputs of the model

and the actual outputs for a set of input data in the test dataset.

The test loss is computed using a loss function that compares the predicted output of

the model to the actual output for each input in the test dataset. The loss function used

depends on the type of problem being solved.

3.2.8.2 Test Accuracy:

 Test accuracy is a metric used to evaluate the performance of a machine

learning model on a test dataset. It measures the percentage of correct predictions made

by the model on the test dataset.

26

 To compute test accuracy, the model is first trained on a training dataset,

and its performance is evaluated on a validation dataset. Once the model is trained and

tuned to perform well on the validation dataset, it is then tested on a separate test dataset

to evaluate its performance on new, unseen data.

 The test accuracy is calculated as the percentage of correctly predicted

labels in the test dataset.

3.2.8.3 Validation Loss:

 During the training process, a model is typically trained on a training

dataset, and its performance is evaluated on a separate validation dataset. The validation

dataset is used to monitor the model's performance and to prevent overfitting, which

occurs when a model performs well on the training data but poorly on new data.

 Validation loss is computed by evaluating the model on the validation

dataset using a loss function, such as mean squared error or cross-entropy. The

validation loss is then used to adjust the model's parameters to improve its performance.

3.2.8.4 Validation Accuracy:

 During the training process, a model is typically trained on a training

dataset, and its performance is evaluated on a separate validation dataset. The validation

dataset is used to monitor the model's performance and to prevent overfitting, which

occurs when a model performs well on the training data but poorly on new data.

 Validation accuracy is computed by evaluating the model on the

validation dataset and measuring the percentage of correct predictions.

3.2.9 Train Dataset:

 The training data is a subset of data used to teach a model to identify

patterns and relationships between input and output variables. The training data is used

to adjust the model's parameters so that it can make accurate predictions on new, unseen

data.

27

3.2.10 Testing:

 When it comes to Machine Learning models, the term "testing" typically refers

to evaluating the accuracy or precision of the model. This is different from the use of

the term in traditional software development.

28

CHAPTER 4

Software Used

4.1 Python

 Python is a high-level, interpreted programming language that was first

released in 1991 by Guido van Rossum. It is designed to be easy to read and write,

making it a popular choice for beginners and experienced programmers alike. Python's

syntax is simple and elegant, with an emphasis on readability and simplicity.

One of the key features of Python is its extensive library of modules, which

allow developers to perform a wide range of tasks without having to write code from

scratch. Python is also known for its versatility, with applications ranging from web

development and data analysis to scientific computing and machine learning.

Python's popularity has grown steadily over the years, due in part to its active

community of developers who have contributed to its open-source codebase. Today,

Python is widely used in academia, industry, and government, and it is considered one

of the most popular programming languages in the world. Python is supported on a

wide range of platforms, including Windows, Linux, and macOS, and it has become a

popular choice for scripting and automation tasks, as well as web development using

frameworks like Django and Flask. With its powerful and flexible syntax, rich library

of modules, and active community, Python continues to be a popular choice for

developers and businesses alike.

4.2 Jupyter NoteBook

 Jupyter Notebook is an open-source web application that allows users to create

and share documents containing live code, equations, visualizations, and narrative text.

It supports over 40 programming languages, including Python, R, and Julia.

29

Jupyter Notebook provides an interactive computing environment, where users

can write and execute code in cells. Each cell can contain code, markdown text, or raw

text. The output of a code cell is displayed directly below the cell, allowing users to see

the results of their code immediately.

Jupyter Notebook also supports the creation of interactive visualizations, using

libraries such as Matplotlib, Bokeh, and Plotly. Jupyter Notebook is widely used in data

science and scientific computing, as it provides a powerful and flexible environment

for data exploration, visualization, and analysis. Its interactive nature makes it ideal for

rapid prototyping and experimentation, while its ability to combine code, data, and

narrative text makes it an effective tool for communication and collaboration.

4.3 Libraries

4.3.1 Open Source-Computer Vision Library:

 OpenCV is a vast open-source library for computer vision, image processing,

and machine learning. Its applications are crucial in real-time operations for modern

systems. It allows for the identification of human handwriting, faces, and objects in

images and videos. In conjunction with other libraries, such as NumPy, Python can

analyze the OpenCV array structure to process images. To identify image patterns and

their distinct characteristics, vector space is used, and mathematical operations are

carried out on these features.

 The initial version of OpenCV was 1.0, and it is available under a BSD license,

making it free for commercial and academic purposes. OpenCV has interfaces for Java,

Python, C++, and C and is supported by various operating systems, including Mac OS,

Windows, Linux, iOS, and Android. Its primary objective was to support real-time

applications, which is why it is built with optimized C/C++ code to take advantage of

multi-core processing.

 OpenCV Functionality:

30

• Image and video input/output: OpenCV can read and write image and video

files in various formats, such as JPEG, PNG, BMP, and MPEG.

• Image processing: OpenCV provides a wide range of image processing

functions such as filtering, thresholding, edge detection, morphology, and

many more.

• Feature detection and extraction: OpenCV includes algorithms for detecting

and extracting various features from images, such as corners, blobs, and

lines.

• Object detection and recognition: OpenCV provides several object detection

and recognition algorithms, such as face detection, pedestrian detection, and

object recognition.

 Applications of OpenCV:

There are lots of applications which are solved using OpenCV, some of them

are listed below:

• Object detection and recognition: OpenCV is often used for object

detection and recognition in various fields such as security, surveillance,

and robotics. For example, it can be used to detect faces, pedestrians,

and vehicles in real-time video streams.

• Medical imaging: OpenCV is used in medical imaging applications for

tasks such as image segmentation, classification, and analysis. It can be

used for applications such as tumour detection, image registration, and

image-guided surgery.

• Robotics: OpenCV is used in robotics applications for tasks such as

object detection, navigation, and control. For example, it can be used to

detect obstacles or track the position of a robot in a given environment.

• Gaming: OpenCV can be used for gaming applications such as motion

capture, gesture recognition, and facial expression recognition.

4.3.2 Numerical Python :

31

 NumPy (short for Numerical Python) is a popular Python library used for

numerical computing and scientific computing. It provides a powerful array computing

functionality and a wide range of mathematical functions for working with arrays,

matrices, and other numerical data structures.

NumPy provides an array object that is like a list or a Python array, but with

additional features such as fast and efficient indexing, slicing, and broadcasting. NumPy

arrays are also homogenous, meaning that all elements in an array must have the same

data type, which allows for more efficient memory allocation and computation. In

addition to arrays, NumPy provides a wide range of mathematical functions for working

with arrays, including basic arithmetic operations, linear algebra, Fourier transforms,

random number generation, and more. It also integrates well with other scientific

computing libraries such as SciPy, Matplotlib, and Pandas.

4.3.3 Tensor Flow:

 TensorFlow is an open-source software library initially created by the Google

Brain Team, comprising engineers and researchers working within Google's Machine

Intelligence research organization, to facilitate machine learning and deep neural

network research. Despite its origins, TensorFlow's applicability transcends its initial

purpose and is widely employed in various domains. Google released TensorFlow as an

open-source software in November 2015.

 TensorFlow's success stems from several factors, including its computational

graph concept, automatic differentiation, and its adaptable Python API structure. These

features enable programmers to tackle real-world problems with TensorFlow more

easily. The unique problem-solving approach employed by TensorFlow's engine

contributes significantly to its popularity, allowing for efficient resolution of machine

learning problems.

4.3.4 Keras:

 Keras is an open-source neural network library written in Python that is designed

to provide a simple and efficient way to build and train deep learning models. It was

32

developed by François Chollet and is now a part of the TensorFlow library. Keras is

known for its user-friendliness, modular design, and flexibility. It is widely used by data

scientists and machine learning practitioners.

 Key features and concepts of Keras:

• User-friendly API: Keras provides a high-level, easy-to-use API that

abstracts away much of the complexity of deep learning. It allows users to

quickly build and train models without needing to have an in-depth

understanding of the underlying mathematics.

• Modularity: Keras is designed with a modular architecture that makes it easy

to build complex models. Models can be built using pre-built building

blocks, called layers, that can be combined in various ways to create

different architectures.

• Compatibility with Python: Keras is built in Python, which means that it is

compatible with many other Python libraries and tools commonly used in

data science and machine learning.

• Pre-trained models: Keras provides access to a number of pre-trained

models that can be used for a variety of tasks, including image classification,

object detection, and natural language processing.

4.3.5 Matplotlib:

 Matplotlib is a popular Python library used for data visualization. It provides a

variety of tools for creating high-quality plots, graphs, and charts, allowing users to

visualize and analyse data in a clear and concise manner.

Matplotlib can be used to create a wide range of plots, including line plots, scatter

plots, bar plots, histograms, heatmaps, and more. It provides a range of customization

options for creating plots that meet specific requirements, including the ability to

modify colours, fonts, labels, axes, and annotations. Matplotlib is an open-source

library and is actively maintained and developed by a community of contributors. It is

widely used in various fields, including scientific research, finance, engineering, and

machine learning.

33

4.3.6 OS module in Python:

 The OS module in Python provides a way to interact with the operating system

on which the Python interpreter is running. It provides a way to access file and directory

management functionality, system information, and process management. The module

includes functions for creating, deleting, moving, and renaming files and directories, as

well as executing shell commands, accessing environment variables, and creating child

processes. The os.path submodule provides functions for working with file paths and

manipulating file and directory names. The OS module is a powerful tool for interacting

with the operating system from within a Python program. It allows developers to create

scripts that can automate common tasks, such as file and directory management, system

administration, and process control.

The os module in Python provides several submodules that offer additional

functionality for interacting with the operating system. Here are some of the key

submodules of the os module:

• os.path: This submodule provides functions for working with file paths and

manipulating file and directory names. Some of the functions in this submodule

include.

• os.system: This submodule provides functions for executing shell commands

from within a Python script. The os.system() function can be used to execute a

command in the shell and return the output.

• os.environ: This submodule provides access to the environment variables on the

system. The os.environ dictionary contains key-value pairs for each

environment variable.

• os.fdopen: This submodule provides a way to open file descriptors using the file

object interface. The os.fdopen() function takes a file descriptor and returns a

file object that can be used for reading and writing.

34

4.3.7 Dlib:

 Dlib is a popular C++ library for developing machine learning and computer

vision applications. It is known for its high performance and flexibility and is widely

used by researchers and developers in the field. dlib includes several pre-trained models

for various tasks, such as face detection, facial landmark detection, object detection,

and image segmentation. These models can be easily integrated into applications and

used to quickly achieve state-of-the-art performance. In addition to pre-trained models,

dlib provides tools for training custom models. These include support for various types

of machine learning algorithms, such as SVMs, decision trees, and neural networks, as

well as efficient optimization algorithms for training these models.

 dlib also includes several utility classes and functions for working with images,

matrices, and other data structures commonly used in machine learning and computer

vision. It is designed to be portable across platforms and can be used on a variety of

operating systems, including Windows, macOS, Linux, and Android.

 Some of the main features of DLIB include:

• Face detection and recognition: DLIB provides pre-trained models for

detecting faces in images and videos, as well as models for recognizing

individual faces.

• Object detection: DLIB includes tools for training and using object

detectors, which can be used to identify and locate objects of interest in

images and videos.

• Image segmentation: DLIB provides algorithms for segmenting images into

different regions based on colour, texture, and other features.

• Machine learning: DLIB includes tools for training and using various types

of machine learning models, such as support vector machines (SVMs),

decision trees, and deep neural networks.

35

CHAPTER 5

Experimental Results

Input:

 The input for system is a human face image. The system has MRL eye dataset

consisting of 80,000 cropped images of eye region, and the following are driver input

images which were given to detection system.

Figure 10 Driver Input images

Output:

 The input is captured through camera, then face tracking and detection is done

through MC-KCF. Once face detection and image resizing have been carried out, the

resulting images are as follows:

Figure 11 Alert Images

Figure 12 Drowsy images

36

From the above image’s features like eyes are extracted. The extracted features are

passed through ResNet CNN and produce buzzer alert if the driver is in drowsy state.

5.1 Results through live face tracking:

5.1.1 Frames recognized as drowsy:

 The system works by continuously analysing a stream of video input to detect

signs of driver drowsiness. When the system detects drowsiness, it will highlight the

driver's eyes using a red rectangle and emit a beep sound as an alert to make the driver

aware of their drowsiness. The detection of drowsiness is achieved by utilizing a well-

trained ResNet Convolutional Neural Network (CNN) model.

Figure 13 Person 1 in drowsy state

Figure 14 Person 2 in drowsy state

Figure 15 Person 3 in drowsy state

Figure 16 Person 4 in drowsy stat

37

Figure 17 Person 5 in drowsy state

By observing above figures in this section, the system detects eye region in whole face

expression and as the eyes are closed, the detecting system alerts driver through buzzer

sound.

5.1.2 Frames recognised as not drowsy:

 The system operates by continuously analysing a live video stream to determine

if the driver is not drowsy. If the system detects that the driver is not drowsy, it will

highlight their eyes using a green-coloured rectangle and will not generate an alert. The

detection of driver drowsiness is accomplished using a well-trained ResNet

Convolutional Neural Network (CNN) model.

Figure 18 Person 1 in alert state

Figure 19 Person 2 in alert state

38

Figure 20 Person 3 in alert state

Figure 21 Person 4 in alert state

Figure 22 Person 5 in alert state

 By observing above figures in this section, the system detects eye region in whole

face expression and as the eyes are open, the detecting system states that the driver is

in active mode i.e., eyes are not closed.

Results on test data:

Test loss: 0.0183

Test accuracy: 0.9817

Validation loss:0.0167

Validation accuracy:0.9833

 In general, test loss is calculated by evaluating dataset which was not used during

training. A lower test loss indicates that the model is more accurate and better at

generalizing to new data. The test accuracy is calculated as the percentage of correctly

39

predicted labels in the test dataset. Validation loss is computed by evaluating the model

on the validation dataset using a loss function, such as mean squared error or cross-

entropy. The goal of training a model is to minimize the validation loss, which indicates

that the model is becoming more accurate at predicting outputs for new, unseen data.

 Validation accuracy is computed by evaluating the model on the validation dataset

and measuring the percentage of correct predictions. The goal of training a model is to

maximize the validation accuracy, minimize the validation loss, which indicates that

the model is becoming more accurate at predicting outputs for new, unseen data.

From the above test results, model contains minimum test loss and validation loss and

maximum validation accuracy, which states that model is well trained and produces

better results than previous models in detecting drowsiness.

40

CHAPTER 6

Conclusion and Future Scope

6.1 Conclusion

 This project proposes a new method for driver drowsiness detection using a

combination of MC-KCF and ResNet CNN. The proposed method utilizes the

advantages of both methods to track eye movements using MC-KCF and classify the

driver's face to determine the drowsiness through ResNet CNN in real-time.

 Experimental results demonstrated that the proposed method produced high

accuracy rates in detecting driver drowsiness based on testing results and through

Resnet CNN model, when driver is in drowsy state upto 1sec, the alarm sound is

produced and alerts the driver stating that he/she is in drowsy state. The proposed

method has the potential to be used in various settings, including in-vehicle systems, to

provide real-time feedback to drivers and prevent accidents caused by driver fatigue.

 This project also contributes to the field of driver drowsiness detection by

providing an overview of existing methods. However, there are few limitations to the

proposed algorithm, such as camera placement and light conditions, variability in eye

movements, computational complexity but the proposed algorithm work can be

extended to other related fields, such as human-computer interaction, facial expression

recognition and emotion detection.

 Thus, in this project, algorithm for fatigue detection using MC-KCF and ResNet

CNN is successfully designed and executed. Overall, this project paper provides a

promising approach to driver drowsiness detection that can help improve road safety

and prevent accidents caused by driver fatigue.

41

6.2 Future Scope

 The future scope for driver drowsiness detection using MC-KCF and Residual

Neural Networks is vast and promising. Here are a few potential areas of development

and improvement for this project:

 Real-time application: Currently, the implementation of this project requires

processing video frames offline, which may not be practical for real-time application.

Future work could focus on optimizing the algorithms and hardware to enable real-time

processing of video streams, which would make the system more practical and effective

for real-world scenarios.

 Multi-modal input: While the current implementation of the project relies solely

on visual cues to detect drowsiness, incorporating other modalities, such as audio or

physiological signals, could improve the accuracy and robustness of the system.

 Personalization: People exhibit different signs of drowsiness, and some

individuals may exhibit unique cues that are not captured by the current algorithm.

Future work could explore how to personalize the drowsiness detection algorithm to

individual drivers to improve its accuracy and effectiveness.

42

REFERENCES

[1] Snehal S.Bharambe and P.M.Mahajan, “Implementation of Real Time Driver

Drowsiness Detection System” IJSR, vol 4 issue1, Jan 2015.

[2] Wanghua Deng and Ruoxue wu, “Real-Time Driver-Drowsiness Detection System

Using Facial Features” IEEE access, vol 7,2019.

[3] Pratyush Agarwala and Rizul Sharma, “Driver Drowsiness Detection Techniques:

Review” EasyChair, Dec 21,2019.

[4] Kusuma Kumari B.M, “Review on Drowsy Driving:Becoming Dangerous

Problem” IJSR, vol 3 issue 1, Jan 2014.

[5] Tejal Jadhav, Siddhi Gajare, Shubhman Salve and Prof. Hani Patil, “Advanced

Driver Assistance System for drivers using Machine Learning and Artificial

Intelligence Techniques” IJRASET, vol 10 issue V, May 2022.

[6] V B Navya Kiran, Raksha R, Anisoor Rahman, Varsha K N and Dr. Nagamani N

P, “Driver Drowsiness Detection” IJERT, vol 8 issue 15,2019.

[7] Jagbeer Singh, Ritika Kanokia, Rishika Singh, Rishita Bansal and Sakshi Bansal,

“Driver Drowsiness Detection System-An approach by Machine Learning

Application”, Journal of Pharmaceutical Negative Results, vol 13, special issue 10,

2022.

[8] Whui Kim, Kyong Hee Lee, Hyun Kyun Choi and Byung Tae Jan, “A Study on

Feature Extraction Methods Used to Estimate a Driver’s Level of Drowsiness”,

IEEE, February 2019[2019 21st International Conference on Advanced

Communication Technology (ICACT)].

[9] Tianyi Hong, Huabiao Qin, “Drivers Drowsiness Detection in Embedded

System.”, IEEE, December 2007[2007 IEEE International Conference on

Vehicular Electronics and Safety].

[10] Dwipjoy Sarkar and Atanu C, “Real Time Embedded System Application for

Driver Drowsiness and Alcoholic Intoxication Detection”, IJETT, Volume 10

Number 9, April 2014.

[11] Fouzia, Roopalakshmi R, Jayantkumar A Rathod, Ashwitha S, Supriya K, “Driver

Drowsiness Detection System Based on Visual Features.” , IEEE, April 2018[2018

43

Second International Conference on Inventive Communication and Computational

Technologies (ICICCT)].

[12] SaeidFazli, Parisa Esfehani, “Tracking Eye State for Fatigue Detection”, ICACEE,

November 2012.

[13] Shruti Wasudeo Deolikar, “ Drowsy Driving Safety Detection”, IRJMETS, vol 05,

issue 01, Jan 2023.

[14] Gao Zhenhai, Le DinhDat, Hu Hongyu, Yu Ziwen and Wu Xinyu, “Driver

Drowsiness Detection Based on Time Series Analysis of Steering Wheel Angular

Velocity”, IEEE, January 2017[2017 9th International Conference on Measuring

Technology and Mechatronics Automation (ICMTMA)].

[15] Seth Weidman, “Deep Learning from Scratch”, O’Reilly ,2019.

[16] Eli Stevens, Luca Antiga, and Thomas Viehmann, “Deep Learning with PyTorch”,

Manning,Jul-2020.

[17] Aleksandar Čolić , Oge Marques and Borko Furht, “ Driver Drowsiness Detection-

Systems and Solutions”, Spring,2014.

[18] Shehzad Saleem, “Risk assessment of road traffic accidents related to sleepiness

during driving: a systematic review”, Eastern Mediterranean Health Journal,vol 28,

issue 9, 2022.

[19] Z Tian and H Qin, “Real-time driver's eye state detection. Proceedings of the IEEE

International Conference on Vehicular Electronics and Safety, October 2005.

[20] Marco Javier Flores, José María Armingol and Arturo de la Escalera, “ Real-Time

Drowsiness Detection System for an Intelligent Vehicle”, IEEE, June 2008[2008

IEEE Intelligent Vehicles Symposium].

[21] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng and

Rong Qu, “ A Survey of Deep Learning-based Object Detection”, IEEE access, vol

7,2019.

[22] Kaiming He, Xiangyu Zhang, “Deep Residual Learning for Image

Recognition”,ILSVRC,2015.

[23] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘‘High-speed tracking with

kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,

no. 3, pp. 583–596, Mar. 2015.

44

[24] Y. Zhang and C. Hua, ‘‘Driver fatigue recognition based on facial expression

analysis using local binary patterns,’’ Optik, vol. 126, no. 23, pp. 4501–4505, Dec.

2015.
[25] R. O. Mbouna, S. G. Kong, and M.-G. Chun, ‘‘Visual analysis of eye state and

head pose for driver alertness monitoring,’’ IEEE Trans. Intell. Transp. Syst., vol.

14, no. 3, pp. 1462–1469, Sep. 2013.
[26] International Organization of Motor Vehicle Manufacturers. Provisional

Registrations or Sales of New Vehicles. Available: http://www.oica.net/wp-

content/uploads/
[27] Wards Intelligence. World Vehicles in Operation by Country, 2013– 2017.

Available: http://subscribers.wardsintelligence.com/databrowse-world.
[28] National Highway Traffic Safety Administration. Traffic Safety Facts 2016.

Available: https://crashstats.nhtsa.dot.gov.

	c1d9d154ca73d739f3eef6367b12ea611c20187e9255a4ecf46cd43b16c564f4.pdf
	1412eff77717624786e3b29cb3eadd723ac76d5b9a22aa2afccfa3df79b2ac6b.pdf
	c1d9d154ca73d739f3eef6367b12ea611c20187e9255a4ecf46cd43b16c564f4.pdf

