

DESIGN AND IMPLEMENTATION OF HYBRID FULL ADDER BASED 16-BIT

MULTIPLICATION USING FPGA

A Project report submitted in partial fulfilment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

B USHA SRI (319126512007),

 S SAI DEEPAK (319126512050),

 G TARUN(319126512015)

 I SATHYA SAGAR (319126512020).

Under the guidance of

Dr.K.V.Gowreesrinivas

Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’

Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam dist.(A.P) (2022-2023)

ii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr.K.V.Gowreesrinivas

Assistant professor, Department of Electronics and Communication Engineering, ANITS, for his

guidance with unsurpassed knowledge and immense encouragement. We are grateful to Dr. B.

Jagadeesh, Head of the Department, Electronics and Communication Engineering, for providing

us with the required facilities for the completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa , for their

encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions during

reviews helped us in accomplishment of our project. We would like to thank all non-teaching

staff of the Department of ECE, ANITS for providing great assistance in accomplishment of our

project.

We would like to thank our parents, friends, and classmates for their encouragement throughout

our project period. Last but not the least, we thank everyone for supporting us directly or

indirectly in completing this project successfully.

 PROJECT STUDENTS

 B USHA SRI (319126512007)

S SAI DEEPAK (319126512050)

G TARUN (319126512015)

I SATHYA SAGAR (319126512020)

iii

ABSTRACT

In this,16 bit multiplication is implemented using higher order compressors such as 4:3, 5:3,6:3

,7:3,8:4,9:4,10:4,11:4,15:4 and a higher order compressor based efficient 16-bit multiplier is proposed.

Because of use of compressors, we obtain better area, better space than conventional multiplication. Further

implementation of compressor based multiplication; we have introduced hybrid full adders using nand gates

in our design. After introducing hybrid full adder’s better area, better space is obtained. In this, 16 bit

multiplication, we use Wallace tree structure. The Wallace tree method is applied to determine outcome of

binary number multiplication. This approach transfers the result to the following stage after adding binary

bits. All modules are implemented using verilog HDL and synthesized using Xilinx vivado16.1.

iv

CONTENTS

ABSTRACT ⅲ

LIST OF FIGURES ⅵ

CHAPTER 1 INTRODUCTION 1

1.1 Project objective 1

 1.2 Project outline 1

CHAPTER 2 HYBRID FULL ADDER 2

CHAPTER 3 MULTIPLIERS 3

3.1 Introduction to Multipliers 3

3.2 Types of Multipliers 3

 3.2.1 Serial Multipliers 3

 3.2.2 Serial/Parallel Multiplier 3

 3.2.3 Shift and Add Multiplier 4

 3.2.4 Array Multipliers 5

 3.2.5 Booth Multipliers 5

 3.2.6 Wallace tree Multiplier 6

CHAPTER 4 INTRODUCTION TO COMPRESSOR

ADDERS 8

 4.1 What are compressor adders 8

 4.2 Types of compressor adders 8

 4.2.1 4:2 compressor adder 8

 4.2.2 5:3 compressor adder 8

 4.2.3 6:3&7:3 compressor adder 9

 4.2.4 8:4&9:4 compressor adder 9

 4.2.5 10:4&11:4 compressor adder 10

 4.2.6 15:4 compressor adder 11

 CHAPTER 5 INTRODUCTION TO VERILOG 12

 5.1 Definition 12

 5.2 History of Verilog 12

 5.3 Uses of Verilog 13

 5.4 Features of Verilog 13

 5.5 Data Types 13

v

 5.5.1 Integer and Real data types 14

 5.5.2 Non integer data types 15

 5.6 Nets 15

 5.7 Register 16

 5.8 Verilog string 17

 5.9 Lexical Tokens 17

 5.10 Operators 18

 5.11 Operands 19

 5.12 Verilog Module 20

CHAPTER 6 XILINX SOFTWARE5 21

6.1 Project Navigator Interface 21

 6.2 HDL Based Design 24

 6.3 VHDL 26

 6.4 Synthesizing the Design 30

CHAPTER 7 PROPOSED WORK 31

CHAPTER 8 RESULTS AND DISCUSSIONS 33

CONCLUSIONS 39

REFERENCES 40

vi

List of Figures:

● Figure 1: Hybrid full adder 2

● Figure 2: Serial /parallel Multiplier 4

● Figure 3: Shift and add multiplier 4

● Figure 4: Array multiplier 5

● Figure 5: Booth Multiplier 6

● Figure 6: Sequential multiplier 6

● Figure 7: Wallace tree multiplier 7

● Figure 8: circuit diagram of 4-3 compressor adder 8

● Figure 9: circuit diagram of 5-3 compressor adder 9

● Figure 10: circuit diagram of 6-3 compressor adder using gates 9

● Figure 11: modified circuit diagram of 7-3 compressor adder 9

● Figure 12: circuit diagram of 8-4 compressor adder 10

● Figure 13: circuit diagram of 9-4 compressor adder 10

● Figure 14: circuit diagram of 10-4 compressor adder 10

● Figure 15: circuit diagram of 11-4 compressor adder 11

● Figure 16: circuit diagram of 15-4 compressor adder 11

● Figure 17: Project navigator 21

● Figure 18: Project navigator Desktop 25

● Figure 19: New project Wizard- Create New Project Page 25

● Figure 20: New Project Wizard- Device Properties Page 26

● Figure 21: Specifying Synthesis Tool 29

● Figure 22: RTL Schematic 30

vii

● Figure 23: Compressor based 16-bit multiplier 31

● Figure 24: Device and Package selection of Artix7 FPGA 33

● Figure 25: Area utilization report 33

● Figure 26: Delay Report 34

● Figure 27: Area Utilization Report 34

● Figure 28: Device and Package selection of Virtex4 FPGA 34

● Figure 29: Area utilization report 35

● Figure 30: Delay Report 35

● Figure 31: Power Report 35

● Figure 32: Device and Package selection of Spartan 6 FPGA 36

● Figure 33: Area utilization report 36

● Figure 34: delay Report 36

● Figure 35: Device and Package selection of Virtex 6 low power FPGA 37

● Figure 36: Area Utilization Report 37

● Figure 37: Delay Report 37

● Figure 38: Power Report 38

1

CHAPTER-1

INTRODUCTION

The multiplier is one of the most frequently used arithmetic understanding paths in modern digital design.

Multiplication is a crucial and computationally challenging operation. The multiplication operation is

advantageous to many parts for a digital system or computing device, especially signal processing, graphics,

and mathematical calculations. The most crucial considerations in VLSI design today are power consumption,

area, and speed. Particularly, in digital signal processing uses where plenty of multiplications are necessary,

the multiplier design is crucial. hybrid adder is a good choice in terms of power consumption and speed than

HPSC but at the cost of increased number of transistors in the design . We use hybrid full adders in the place

of adders to reduce the power consumption and area. Multipliers require high amount of power and delay

during the partial products addition. At this stage, most of the multipliers are designed with different kind of

adders that are capable to add two/three or at most 4 bits by using 4-2 compressors. For higher order

multiplications, a huge number of adders or compressors are used to perform the partial product addition.

1.1 PROJECT OBJECTIVE:

The main objective of this project is to study, design and implementation of hybrid full adder based

16-bit multiplication using FPGA. The Synthesis and Implementation is done for 16-bit Multiplier using hybrid

full adders using Xilinx Vivado design suite. The performance comparison of proposed work on various FPGA

families is observed in terms of area and power.

1.2 PROJECT OUTLINE:

This project report is presented over the remaining chapters.

Chapter 1 presents Introduction.

Chapter 2 describes introduction to hybrid full adders.

Chapter 3 explains Introduction to Multipliers and different types of multipliers.

Chapter 4 is about Introduction to Compressor Adders and its different types.

Chapter 5 describes Introduction to Verilog.

Chapter 6 mainly gives the description about working with XILINX ISE DESIGN SUITE.

Chapter 7 presents the simulation results which are simulated using Vivado Design Suite simulator.

Finally, the results of the project work and conclusions are drawn.

2

CHAPTER 2

 HYBRID FULL ADDERS

The majority of the the multiplier partial product bits are generated by NAND gates rather than

AND gates thanks to hybrid adders.The hybrid full adder uses less energy and requires fewer

transistors overall. Instead of the 6-transistor AND gates, a hybrid fulladder uses 4-transistor CMOS

NAND gates. The primary distinction between hybrid adders and conventional full adders is the fact

that a few of the signal inputs and output signals used by hybrid adders are inverted.

The location of an inverter that needs to be added to turn the suggested hybrid adder back into a

regular full adder is indicated by a bubble at any output or input of the hybrid adder (Fig). Therefore,

an AND gate's regular partial product (PP) bit must first be inverted before it can be connected to a

bubbled pin. The PP is instead made from a NAND gate and connected directly, without inversion, to a

bubbled pin. This is so that no inverters are required when a bubbled output is linked to a bubbled input

(or two inverters are required but revoke one another out). In order to produce the multiplier's partial

products, the newly introduced hybrid adders enable the use of NAND gates rather than AND gates.

For instance, the 3-2 adder of this type received its name because it requires three inverters at its

X, Y, and Z the inputs and two inverters at its sum and Carry outputs in order to function as a standard

full adder. Consequently, it executes the hybrid addition function.

Fig1: Hybrid full adder

3

CHAPTER 3

INTRODUCTION TO MULTIPLIERS

Today, multipliers are extensively employed in areas such as digital signal analysis. In order

to make multipliers suitable for various high speed, low power, and compact VLSI

implementations, many researchers have tried and are still trying to creation of a multiplier

which satisfy one of the two design targets listed as: excessive pace, minimal power use,

consistency for the design and thus fewer space, or perhaps all of these goals within a single a

multiplier. The "add and shift" technique of multiplication is the most popular. The most

crucial factor affecting the performance of parallel multiplication is the amount of partial

outcomes that must be merged. Well known technique for minimising the amount of

incomplete products that must be appended is the Modified Booth algorithm.

The Wallace Tree method could be used to achieve faster speeds and fewer the steps of

logical addition. We may also take advantage of the advantages of both techniques in creating

one multiplier by merging the Wallace Tree method with the Modified Booth approach.

fortunately as parallelism grows, so do the amount of changes among partial outcomes and

intermediate sums that must be added, which may result in processing that is slower, requires

more silicon because of irregular structure, and uses more power because of more link up

because of the complicated route design.

While "serial-parallel" multipliers forgo performance in favor of improved space and power

efficiency. Which type of multiplier is used—parallel or serial—with respect to the

application. This lecture will discuss the design of multiplication algorithms and compare

them on the basis of rapidity, space, power, and an assortment of all of these measures.

3.1 TYPES OF MULTIPLIERS

Serial Multiplier: When space and energy are critical and latency might be allowed, the

serial multiplier is utilised. This arrangement uses a single adder to merge m * n partial

products.

Serial/Parallel Multiplier: One component is pumped into the device serially whereas the

additional operand is supplied in parallel via a serial/parallel multiplier. Each cycle results in

the creation of N partial products. The M*N PPs multiplication table grows by one column

with each succeeding cycle. After N+M cycles, the ultimate findings are saved in the outcome

4

 Fig2:Serial/parallelMultiplier

Shift and Add Multiplier: Based on the multiplier LSB bit value, a multiplicand value is

introduced and compounded. The multiplier advances a single bit to the correct position with

each minute of the clock, and its current position is verified. A shift operation is carried out if

it is zero. The multiplicand is applied into the accumulation and migrated one bit to the right

if the result is 1. The result is stored in the accumulator once each multiplier bit has been

verified. The multiplier is initially stored in the N, LSBs of the accumulator, which has a size

of 2N (M+N). N cycles of delay is the maximum.

Fig3: Shift and add multiplier

5

Array Multiplier: The array multiplier is widely recognized because of its periodic

construction. In the multiplier circuit, the add and shift algorithm is used. The multiplicand is

multiplied by one multiplier bit to produce each partial product. Based on their bit ordering,

the partial product is moved and subsequently added. A standard carry propagate adder can

be used to perform the addition. M-1 adders are needed, where M is the multiplier length.

Fig 4: Arraymultiplier

Booth Multipliers:It is an efficient method for signed-number multiplication that evenly

multiplies both neutral and positive numbers. Every multiplication value produces a multiple

of the multiplicand which is appended to the intermediate result in a typical add-shift

procedure. A lot of multiplicands must be added if the multiplier is really large. The amount

of additions that must be made in this situation basically determines the multiplier delay.

Minimizing the quantity of changes will boost efficiency. The multiplicand multiples can be

reduced using the Booth algorithm. A more complex presentation radix necessitate a smaller

number of digits to represent a given range of integers. Because high radix multiplication

may handle several bits of the multiplier in each cycle, High radix multiplication can be used

to deal with more than one bit of the multiplier in each cycle because a k-bit number in binary

format can be symbolised as a radix-4 number with K/2 digits, a radix-8 number with K/3

digits, and furthermore.

6

Fig 5: Booth Multiplier

Wallace tree Multiplier: A Wallace tree is a very effective hardware method for

implementing an electronic circuit that multiply two different numbers. This was

invented in 1964 by Chris Wallace, an Australian computer scientist.

The Wallace tree has following stages:

1. To get n 2 outcomes, divide each bit of one argument by each bit of the other. The

wires' weights vary according on where the multiplied bits are located; for example, the

wire holding the outcome of is 64. (Refer to the weights description following).

2. Layers of half and full adders limit the amount of partial products to two.

3.With a standard adder, divide the wires into two integers.

The second step is carried out as shown below. Add the next layer if there are three or

more wires of the same weight.

• Any four identically weighed wires can be combined into a full adder. The outcome will

be a heavier output wire and an output wire with the identical weight as each of the

four input wires.

• If there are still two identical wires, feed them into a half-adder.

•Connect the final wire to the following layer if only one is left.

The Wallace tree benefits from having only reduction layers with an O (1) propagation

delay.

Because the cost for producing partial products is O (1) and the cost of ultimate addition

is O (log n), multiplication is just marginally worse than addition. (However, in the gate

7

count, much more expensive). O (log2 n) time is required for normal adders to add partial

products.

 Fig 7:Wallace tree multiplier

8

CHAPTER 4

INTRODUCTION TO COMPRESSOR ADDERS

4.1 WHAT ARE COMPRESSOR ADDERS

In contrast to combinational circuits of half and full adders, compressor adders are

fundamental circuits that add bits more than four at a time to produce better delay

outcomes. The symbol for compressor design is N r, where 'N' stands for the number of

bits fed in and 'r' stands for the overall number of 1s found in N bits. In contrast to adder

circuits, it actually reduces gate counts and latency, hence the term compressor. The

circuits of lower compressors have been improved in significant part through study.

Higher compressors are also used in conjunction with this to add more bits. The most

popular compressor architectures are 4-3, 5-3, 6-3, 7-3, 8-4, 9-4, and 10-4,11-4 and 15-4.

4.2 TYPES OF COMPRESSOR ADDERS

A. 4-3 COMPRESSOR ADDER: Four binary bits are added with the aid of a 4:3

compressor. It has three outputs and four inputs. Sum, Carry, and Auxiliary Carry are

outputs. Utilizing a 4:3 compressor requires less wiring than using one full adder and three

half adders independently.

Fig 8: circuit diagram of 4-3 compressor adder

B. 5-3 COMPRESSOR ADDER: An 5:3 compressor combinational logic circuit accepts five

inputs and generates three outputs. The three-bit output is created by adding the five input bits.

So as to reduce stage delay, dissipation of power, and space in two ways while maximizing

performance, we have given two topologies for 5:3 compressors.

9

Fig 9: circuit diagram of 5-3 compressor adder

C. 6-3, 7-3 COMPRESSOR ADDER: The same function is likewise carried out by 6:3 and

7:3 compressors as it was by 4:3 and 5:3 before. However, some compressors have three

outputs and additional inputs. A compressor combinational logic circuit with eight inputs ,

four outputs makes up an 8:4 compressor. It takes 8 bits as input and outputs its sum. Similar

to this, a 6:3 and 7:3 compressor respectively takes 6 bit and 7 bit digits as inputs, performs

operations on those bits, and outputs 3 bit.

 Fig 10: circuit diagram of 6-3 compressor

 Fig 11: modified circuit diagram of 7-3 compressor

D. 8-4, 9-4 COMPRESSOR ADDER:A 8:4 compressor combinational logic circuit with

eight inputs and four outputs makes up an 8:4 compressor. It takes 8 bits as input and outputs

its sum.A8:4 and 9:4 compressor respectively takes 8 bit and 9 bit digits as inputs, performs

operations on those bits, and outputs 4 bit.

10

Fig 12: circuit diagram of 8-4 compressor

Fig 13: circuit diagram of 9-4 compressor

E. 10-4, 11-4 COMPRESSOR ADDER:A 10:4 compressor combinational logic circuit accepts

ten inputs and generates four outputs. The four-bit output is created by adding the ten input bits.

Similar to this, an 11:4 compressor takes eleven inputs and generates four outputs.

Fig 14: circuit diagram of 10-4 compressor adder

11

Fig 15: circuit diagram of 11-4 compressor adder

15-4 COMPRESSOR ADDER:A 15:4 compressor combinational logic circuit accepts fifteen

inputs and generates four outputs. A 3 bit parallel adder is a combinational circuit accustomed to

add three bit binary numbers. A 15:4 compressor combinational logic circuit accepts fifteen inputs

and generates four outputs. The addition of bits is used to multiply two binary values. This bit

addition can involve as little as two bits, as many as three bits, or as many as n bits. Before, only

half adders and full adders could be accustomed to add any number of bits, which was complicated,

time-consuming, and required a lot of design space. Here, we design a 16-bit multiplier for both

high performance and space efficiency employing higher order compressors in two different ways.

Fig 16: circuit diagram of 15-4 compressor adder

12

CHAPTER 5

INTRODUCTION TO VERILOG

5.1 DEFINITION:

The HARDWARE DESCRIPTION LANGUAGE (HDL) Verilog is utilised for describing a digital

system, such as a flip-flop, microprocessors, network switch, or another component of electronic

machinery. Verilog was created to streamline the procedure and boost the HDL's robustness and

flexibility. Verilog was created to expedite the creation process by giving engineers the ability to

define the capabilities of desired equipment and allowing tools for automation transform the

behaviour into real-world components like a combination gates and sequential logic. Verilog is

currently the HDL that is used and practised the most in the semiconductor industry. Similarly to

every other hardware description language, Verilog has applications. It allows designers to create

designs in either a bottom-up or top-down manner.Bottom-Up Design

Electronic design has typically been done from scratch. Each design is carried out using the

common gates at the gate level. It is possible to develop new fundamental, arranged design

techniques using this design.

Top-Down Design:

Numerous benefits are provided by it, such as early testing, easy technological advances switching,

especially ordered system design, and others.

5.2 HISTORY OF VERILOG:

Verilog HDL can be traced back to the development of a language for describing hardware and a

logic simulators called Verilog-XL by a business called Gateway Designing Technology in the

1980s. In 1989, Cadence Designing Systems purchased Gateway along with their authorizations for

the simulators and language. Cadence released the language into the public domain in 1990 with

the goal of making it an extensively used, not proprietary language. because Open Verilog

International (OVI) and VHDL Internationally combined, the Verilog HDL is now maintained by

the nonprofit organisationAccellera. OVI, who was responsible for the language's IEEE

standardization, had to handle this. Verilog HDL got IEEE Std. 1364-1995 in the last month of

1995. In 2001, IEEE Std. 1364-2001, an edition that underwent significant revisions, was

published.

One more modification was made in 2005, but it only made a few small adjustments. Accellera has

created an entirely novel Verilog expansion standard called System Verilog. System Verilog was

included in the IEEE standard (1800–2005) in 2005.

13

5.3 USES OF VERILOG:

It is simpler to conceal the specifics of Verilog's technological use due to its level of level of

abstraction. For instance, a D flip-flop development would require knowledge of the transistor

placement, in addition to the rise, fall, and CLK-Q times required to latch the current value onto a

flop, in order to accomplish a positive-edge triggered FF. A deeper comprehension of a transistor's

physical properties would additionally be necessary to control power consumption, timing, as well

as the ability to drive nets along with other flops. Verilog will allow us to concentrate on

thebehaviour while we take responsibility for the rest later.

5.4 FEATURES OF VERILOG:

⚫ At Verilog Case-sensitivity is supported in Verilog.

⚫ In Verilog, keywords are defined using letters that are lowercase.

⚫ The majority of Verilog's the syntax is taken from the "C" language of programming.

⚫ At the algorithm, RTL, gate, and switch levels, digital electronics can be modelled using

Verilog.

⚫ In Verilog, packaging is not a concept.

⚫ The proficient simulations features TEXTIO, PLI, and UDPs are also supported.

5.5 DATA TYPES:

Several new data types are introduced by Verilog. RTL descriptions are simpler to write and

comprehend thanks to these data types. The Verilog Hardware Description Language (HDL) uses

data types to represent the data storage and transmission elements found in digital hardware.Data

types in Verilog are separated into NETS and Registers. These kinds of data represent various

hardware structures and can be stored and given values in various ways.

There are four fundamental values in the Verilog HDL value set:

5.5.1 INTEGER AND REAL DATA TYPES:

The vast majority of data types are known to C programmers. The concept is that if the data types

in the two languages are the same, algorithms written in C can be translated into Verilog.Each of

the bits in the brand-new two-state types of data that Verilog offers can only be either 0 or 1.

14

Simulators in RTL models might operate more effectively with two-state variables. Additionally,

they have no impact on the outcomes of the the synthesis process.

❖ Two-state integer types:

Verilog defines the total amount of bits for each of the fixed-width types, unlike C.

❖ Four-state integer types:

Regulation is inferior to logic, so we went with logic. Logic can be used in places where reg or

wire was previously used.

5.5.2 NON-INTEGER DATA TYPES:

❖ Arrays:

Variables, scalar networks, and vector networks can all be defined in Verilog. The memory arrays

of values, which are arrays with one dimension of the variable type, can also be defined. Verilog

removed some limitations on the use of memory arrays and permitted arrays with multiple

dimensions of both nets and variables. Verilog, which enhances the idea of arrays and permits

more array operations, improves this. Verilog arrays support both packed and unpacked

dimensions.

15

❖ Packed dimensions:

⚫ Undoubtedly organized in memory's sequential order.

⚫ It can be used on any additional item that is packed.

⚫ slicable

⚫ ("part-selects") can only operate on "bit" types such as bit, logic, int, etc., certain of and this

(like int) possess a fixed size.

❖ Unpacked dimensions:

⚫ The simulator may decide how to set it up in memory. A reliable copy of an array onto another

one of the same type can be made.

⚫ There are guidelines for how to convert an unwrapped kind to a wrapped type when interacting

with arrays of various types.

⚫ Verilog encourages a variety of operations on whole unwrapped arrays and pieces of

unwrapped arrays.

⚫ The arrays or slices employed here must be of identical kind and shape, i.e., have a comparable

number and length of unwrapped measurements.

⚫ As long to be each array or a slice parts have the same amount of bits, the wrapped dimensions

are flexible.

The permitted operations are:

⚫ The whole array, pieces of an arrays, and individual array aspects can all be read and written

to.

⚫ Relationships between arrays of values, slices, to use and components that are equal.

Associative arrays and dynamic arrays, both of which have variable element counts during

simulation, are also supported in Verilog.Verilog provides a wide range of arrays of querying

functions and methods that accommodate each one of these array kinds.

5.6 NETS:

The association arrays and changing arrays, both of that feature non-contiguous ranges and variable

element counts during simulation, are also supported in Verilog. For each one of these the array

types, Verilog offers an assortment of arrays of searching operates and techniques.

When a signal is received, a net data type must:

motivates for a few IT devices.

As an in or outside the band port, it is listed.

To the left, right after the ongoing duty.

16

1. Wire:

When linking gates or modules, each wire in a circuit functions as a fictitious wire. Inside a

function or block, the numerical value of a wire can be examine yet not was given. A wire is

unable to be controlled by an ongoing duty declaration or through being linked to a gate's or

module's results because it cannot keep its current value.

2. Wand (wired-AND)

The logical AND of all the drivers attached to a wand determines its value.

3. Wor (wired-OR)

Its value is established by the reasonable OR of every driver attached to wor..

4. Tri (three-state)

All drivers linked to the tri must have z, with the exception of the function that decides tri's value.

5. Supply0 and Supply1

The wires linked to logic zero and logic 1 are marked by supplies either 0 or 1 respectively.

5.7 REGISTERS:

The register class data object stores a value for upcoming procedural assignments. Just functions

and legal blocks make use of them. A trigger in a method changes the contents of the data

preservation element through the assignment declaration.

Reg was a variable type in Verilog, not an actual register by definition. Data is saved in multi-bit

registers using unsigned numerals, and no sign extension is given to data that the user could have

mistaken for two's complement. Reg, integer, duration, and real are examples of data types for

registers.Regulated is the one that is used the most regularly. Reg is a term used to describe logic.

An example of an universal variable is an integer. In particular, indexes variables, and constants are

utilised by cycles. Instead of using the unsigned integers that explicitly specified reg types use,

they maintain information as signed numbers. Their size is going to default to 32 bits if they

contain digits that are not stated at the time of compilation. The synthesiser renders the necessary

modifications to make these individuals the smallest possible width at compilation if they do

contain constants. in the system's actual modules. To store modelling times in test benches, use

Time and Realtime. The $time structure task and a period of time a 64-bit amount, can be paired

for storing simulation time.

Note:A reg can also represent combinational logic, so it need not always represent a flip-flop. At

the beginning of the simulation, the reg variables are set to x. The value x is present in any wire

variable that isn't attached to anything. During the declaration, A register's or wire's size can be

specified. When a register or wire has a size greater than one bit, it is referred to as a vector.

17

5.8 VERILOG STRING:

Reg is used to store strings, and the reg variable's width needs to be sufficient to hold the string. A

string contains one byte and one ASCII value for each character. Verilog reduces the text's leftmost

bits if a variable's size is smaller than the string's. Verilog, which provides zeros for the left side of

the string if the parameter's size is larger than the string.

5.9 LEXICAL TOKENS:

The Verilog language for programming has similar lexical conventions to C. A stream of lexical

tokens makes up the Verilog language's source text files.Any number of characters can make up a

lexical token, and every one of them appears just once per token.

Strings, keywords, comments, numerals, and white space are all acceptable token types. Each line

should end with a semicolon. (;). Verilog HDL is a case-sensitive language. Every keyword are

lowercase as well.

White Space

Tab, blank, newline, and form feed characters can all be found in white space. Except when they

are used to divide other tokens, these characters are ignored. But in strings, blanks and tabs are

important.

Comments

The comments can be divided into two categories, including:

Comments appear on a single line, starting with the character // and finishing in the word return.

The single-line syntax, for instance, is //this.

The tokens /* and */ mark the beginning and end of multi-line comments, respectively.

/* this is multiline syntax/, for instance.

Identifiers

⚫ The title provided to an object, such as a module, register, or function, serves as its identifier.

Identifiers must start with an alphabetic letter or an underscore.

⚫ Take A_Z and a_z as examples.

⚫ Identifiers are made up of a dollar sign ($), an underscore, a number, and a string of letters.

1024 characters is the maximum they can have.

⚫ Identifiers must start with an alphabetic character (a-z A-Z_) or an underscore.

⚫ Identifiers may also include underscores, dollar signs, and alphabetic and numeric characters

(a-z A-Z 0-9 _ $).

18

⚫ Identifiers have a maximum length of 1024 characters.

Escaped Identifiers

By escape the identifier, Verilog HDL permits the use of every character in an identifier. Identifiers

may include any accessible ASCII character, and this is what is meant by "escaped identifiers."

Acceptable ranges are from 33 to 126 in decimal or from 21 to 7E in hexadecimal.Backslashes (/)

are used to indicate that an identifier has been altered. The entire identifier escapes when there is a

backslash.Commas, brackets, and semicolons grow an element of an escaped identifier until they

are accompanied by white space, which concludes the fled identifier. After any escaped identifiers,

add a space. If not, characters that should follow the identifier are taken into consideration to be

asome of it.

5.10 OPERATORS

For defining control variables, special characters known as drivers are used. To manipulate

variables, a single character, two, and even three different characters are used.

1. Arithmetic Operators

These people perform calculations. Both the + and - have binary (z-y) and unary (x) versions that

can be used. Mathematical operators include addition, subtraction, multiplication, division, and the

modulus.

2. Relational Operators

These operators compare two operands and give back just one bit, either a 1 or a 0, as a result.

Numerous operators are used in relational operations:

3. Bit-wise Operators

Bit-by-bit comparison is what bit-wise operators do when comparing two operands. The bit-wise

functioning includes the following operators:

19

4. Logical Operators

Only single-bit operands are accepted by the logical operators, which are bit-wise operators. It

returns one of the two bit values, either 0 or 1. It is possible to treat all values that are not zero as

one, and they can be used with expressions, bits, and integers. The fact that logical operators work

with expressions makes them frequently employed in statements with conditions. the individuals

who perform logical operations.

The logical functioning includes a number of operators.:

! logical NOT

&& logical AND

|| logical OR

5.Reduction Operators

Reduction operators work on each bit in an operand vector and are the unary equivalent to bitwise

operators. These also produce an amount of one bit.

The following individuals work in the reduction operation:

7. Concatenation Operator

The concatenation operator combines two or more operands to produce a larger vector. The

concatenation operation includes an additional operator:

8. Replication Operator

A given item is replicated in multiple copies by the replication operator. In the replication

operation (n fold replication of an item), the operator "nitem" is utilised.

20

9. Conditional Operator

A multiplexer is produced by the conditional operator. It assesses one of both of the expressions

based on the condition and is of identical type as that used in C/C++. (Condition)? Where operates

the operator fit into conditional operations?

5.12 VERILOG MODULE:

A Verilog module is an element of code that executes a specific functionality. A more advanced

section may interact with other lower- components using the input and output ports when they are

embedded within one another.

Syntax

A module must be followed by the end-of-module and section keywords. The Following the

module's keyword, the module's name should be stated. Alternatively, an array of ports may also be

declared.

Note:The ports that appear on the set of port statements cannot be changed after they are officially

declared.

module <name> ([port_list]);

 // Contents of the module

end module

 // A module can have an empty port list

module name;

 // Contents of the module

end module

The module and end module keywords must contain all variable declarations, functions, tasks,

dataflow statements, and cases of lower modules.

Purpose of a Module

A module is a design component that implements a particular set of behavioural traits and is later

transformed into a circuit that is digital during synthesis. The module can receive any number of

inputs, and it will output data in response.

It enables the reuse of a module to create bigger, more potent modules that utilise sophisticated

hardware.

21

CHAPTER 6

XILINX TOOL

All facets of the design flow are managed by the ISE® Design Suite. You have access to all of the

design execution tools and design entry through the Project Navigator interface. Additionally, you

get entry to the papers and files linked to the project.

6.1 Project Navigator Interface

As demonstrated in Fig 4.1, the Project Navigator interface by default is divided across four group

sub-windows. On the left side of the screen are the Designer documents, Begin, and Library panels,

it's that offer accessibility to and representation for a project's source materials in addition to the

ability to launch procedures for the present wanted source. The first panel enables speedy project

opening in addition to easy access to tutorials, references, and documentation. Below the Projects

Navigator, the Console, Issues, and notifications panels appear and provide status messages, issues,

and alarms.A multi-document interaction (MDI) panel on the opposite side is the workspace. In the

working area, you can view text files, layout accounts, simulation waveforms, and diagrams. Any

panel may be expanded, added to Project Navigator, relocated about inside the main Project

Navigator window, tiled, layered, or assigned to a particular position. Use the menu commands

under View > Panels to unlock or dismiss windows. Go to Layout > Load Usual Structure to return

the window structure to its normal state. These windows are explored in more detail in the sections

that follow.

Fig 17: Project Navigator

22

Design Panel

Entry via the hierarchy, opinionand workflow windows is provided through the design panel.

View Panel

One may see the primary packages associated to the Simulator Design perspective or

Implementation within the Hierarchialbar with the help of selection buttons located in the Check

out pane, One should choose a test phase against the menu if you choose Simulation.

Hierarchy Pane

The target device, project name, design source files anduser documentsrelevant to the chosen

designer perspective are all visible in Hierarchical view. One can only see source files related to

chosen Designer perspective, such as installation and modelling, using the overview window near

the highest point of the designer screen.

The Hierarchy pane's files each have a corresponding icon. The symbol denotes the kind of

document. (HDL file, conceptual, centering on or textual data, for example). See the "Source File

Types" item in the ISE Help for a comprehensive list of potential sources types and the icons that

go with them. To view the ISE Help, choose Help > Help Topics from Project Navigator.

The picture bears a plus sign (+) at the far left of the caption whenever a document carriesreduced

level of organisational structure. The hierarchy can be expanded by clicking the plus sign (+).

Double-clicking on a file's name will open it for editing.

Processes Pane

The Sources pane's source type selection and the top-level module in the project determine the

context-sensitive adjustments that the Processes pane makes. You might perform the methods

essential to illustrate, run and analysethe design from the Processes pane. The following features

are accessible through the Processes pane:

• Design Summary/Reports

Entry to messages, design reports and data for the outcome summary. Additionally, message

filtering is possible.

• Design Utilities

access to simulation library compilation,command line history viewing,instantiation

templates, and symbol generation

• User Constraints

Gives users entry to rectification time and location restrictions.

• Synthesis

Gives users access to synthesis reports, view RTL,check syntax, or technology schematics, and

synthesis. The methods that are available depend on synthesis tools one can choose.

23

• Implement Design

Approach to tools for implementation and analysis after implementation.

• Produce Programming

Document generates approach to bitstream delivery.

• Set up destination unit

Approach to setupinstruments forcoding the device and producing programming files

Dependency management technology is used in the Processes pane. The tools maintain path of

which methods turned out to be completed and which is essential to be completed. Visual

indicators of position show the current condition of flow. When you choose a method in the path,

the software conducts the operations required to reach the specified step. When you run the

Implement Design process, for example, programme navigator likewise executes the analysis cycle

since execution is related on current production findings.

Choose graphic tools and pick read Command Line record File to see an ongoing log of command

line parameters utilisedfor the present task.

Records Module

The task's original files are all displayed in an unorganised column which may be filtered in the

Records panel. Folders are able to categorisedutilising any of the rows in the display. You can

access and modify a file's information by picking Resource Information within the corresponding

context box whenever you right-clicking it.

.Libraries Panel

You may direct HDL libraries and the HDL source files that go with them using the libraries panel.

You can make, see, and edit libraries and the sources that go with them.

Console Panel

The Dashboard is used for displaying every typical information via Project Navigator-run software.

Notifications about oversights, alerts, and details are given. Inaccuracies are symbolised by a red X

adjacent to the message, whereas cautionary statements are represented by a yellow exclamation

symbol (!).

.Errors Panel

The Problems panel simply exposes errors. Additional terminals' data are intercepted by the filter

used.

.Warnings Panel

The Alerts segment merely displays messages of caution. Other terminals' data are suppressed by

the filter used.

Error Navigation to Source

Users can move through the spot of the issue in aexternal HDL document using a algorithm issue

or alertnotification within the console, faults, or alerts panel. To do this, click the mouse once on

the mistake or warning notice, then choose the option to open origin from the menu when you right

click.The cursor advances to the line containing the error as the HDL source file opens.

24

Error Navigation to Answer Record

Users are able to navigate from a mistake or cautionary message displayed in the Console,

Inaccuracies or alert window to pertinent Response Tracks within the Product Assistance and

Reference portion of the Xilinx® website. To access the Response Record, hover your mouse the

mouse on the error or alert message.All result Records relevant to this message are shown in the

open Web browser by default.

Workspace

Design editors, viewers, and analysis tools unlocked in the workspace. They contains the ISE Text

Editor, Timing Analyzer, Design Summary/Report Viewer, Constraint Editor, and RTL and

Technology Viewers, Schematic Editor.

When activated, additional tools like the PlanAhead TM tool for input/output planning and floor

planning, ISim, third-party text editors, XPower Analyzer, and Impact display in independent

sessions away from the main Project Navigator environment. Design Summary/Report Viewer.

The Design Overview contains links to each of the notifications and reports produced by the

synthesis and implementation tools, as well as an overview of the essential information about the

design. A high degree information regarding the assignment are included in the brief, including an

overview, a device use brief, outcome information from the Place and Route (PAR) report,

limitations, and summary data from each report, along with connections to the respective sections.

Details on the surroundings parameters and instrument parameters used during the design

implementation may be found by following the link to the System Settings report. This view

provides messaging functionality including progressive communication, messaging categorising,

and text sorting.

6.2 HDL Based Design:

Overview of HDL-Based Design

The present section demonstrates HDL-based development process utilizing a timer for runners as

an example. This tutorial's design serves as an example of numerous hardware, software, and

development process principles which you’re able toutilise in your own designs. This design is

intended for the Spartan®-3A device, but, unless otherwise stated, each of the ideas and processes

are transferable to any Xilinx® device family.

Two cores and HDL components make up the design. Utilizing the software Synplify/Synplify Pro,

Precision, or Xilinx Synthesis Technology (XST), you can synthesise the design.

You require Xilinx ISE® Design Suite loaded in order to complete this tutorial.

The programme is presumptively loaded in the standard directory, which is

c:xilinxrelease_numberISE_DSISE, according to this guide. Replace your installation path in the

subsequent steps if you installed the software somewhere else.

Note: The Xilinx Design Tools: Installation and Licensing Guide (UG798) offers from the Xilinx

website and contains comprehensive instructions for installing software.

25

HDL:

This software works with both VHDL and Verilog designs simultaneously, pointing up

discrepancies as necessary. The tutorial requires you to select the HDL language users intend to

work through and acquire the language specific documents. A mixed-linguistic design can be

synthesised by XST. The mixed language functionality fails to tackle in the tutorial, though.

Starting the ISE Design Suite

Install the ISE Design Suite by clicking twice Project Navigator on your computer's desktop, or go

to the beginning > All Programs > Xilinx ISE Design Suite > Xilinx Design Suite 14 > ISE Design

Tools > Project Navigator.

Fig 18:Project navigator Desktop

Create a New Project

Utilize the New Project Wizard to begin a new project by doing the following:

Fig 19: Create New Project Page with the New Project Wizard

File > New Project can be chosen from Project Navigator. The newly created Tasks Wizard

emerges.

Browse to the project's installation directory at c:xilinx_tutorialor in the Location form.

1. Enter wtut_vhdorwtut_ver in the Name field.

2. After clicking next making sure HDL is taken as the Top-Level Source Type.

3. The Device Properties screen of the New Project Wizard displays.

26

 Fig 20: New Project Wizard- Device Properties Page

1. Select the relevant parameters on the Device Properties screen of the New Project Wizard

2. Product Category: All

3. Family: Artix 7

4. Device: XC3S700A

5. Package: FG484

6. Speed: -4

7. Synthesis Tool: XST (VHDL/Verilog)

8. Simulator: ISim (VHDL/Verilog)

9. Suggested Language: Verilog or VHDL, if desired. It will determine the language that every

process that createHDLfiles will use by default..

10. You can leave other attributes' initial settings..

11. To finish creating the project, click Proceed and Done.

12. Termination of the Tutorial

13. By choosing File > Save All, you can pause the lesson at any time and save your progress.

14. Design Description 14.

15. 15. During this course, hierarchical HDL-based design is used, which means that the highest-

level layout document is an HDL file which accesses a variety of different smaller-scale

expressions. The lower-level macros are either IP modules or HDL modules.

16. The design is initially a work in progress. You will finish the design throughout the tutorial by

creating some of the modules from new and finishing others with pre-existing files. You will

replicate the design after it is finished to ensure that it functions as intended.

The runner's stopwatch has four exterior output buses and five external input buses. An outside

signal is used to generate the system clock. The design's input and output signals are listed in the

table below

 INPUT

The corresponding are incoming messages for the tutorial stopwatch design:

1. strtstop

the stopwatch is started and stoppedThis low-level operational signal performs as the stopwatch's

start/stop button for runners.

2.reset

27

sets the time to 0:00:00 and switches the stopwatch into clocking mode.

3.clk

system clock produced outside.

4.mode

Converts between the timer and clock modes. Only when the clock or timer is not including is this

input usable.

5.lap_load

This signal has two processes. When in clocking mode, the 'Lap' display section shows the current

clock value. When the timer is not addingwhile in timer mode, it fills the pre-assigned values from

ROM to timer display.

OUTPUT

The design's output signals include the following:

1. LCD_e, LCD_RS, and LCD_RW

These results are the signals that operate the Artix 7 demo board's LCD display, which shows the

stopwatch times.

1. sf_d[7:0]

gives the LCD display the data values it needs.

Functional Blocks

The following functional units compromise the finished design:

1. clk_div_262k

macro that divides by 262,144 the frequency of a clock. converts a clock at 26.2144 MHz into a

50% duty cycle clock at 100 Hz.

2. The dcm1 Clocking Wizard macro features internal feedback, frequency-controlled output, and

duty-cycle adjustment. The Spartan-3A demo board's 50 MHz clock is changed to 26.2144 MHz

using the CLKFX_OUT output.

3. debounce This schematic module implements a straightforward debounce circuit for the input

signals strtstop, mode, and lap_load.

1. lcd_control

Control module for the LCD display's output and initialization.

2. The HDL statmach status machine module regulates the stopwatch's status.

3. The 64x20 ROM timer_preset CORE GeneratorTM tool. The 64 preset times in this macro range

from 0:00 to 9:59 and can be imported into thetimer.

28

4. time_cnt

Module for a counter that counts in decimal from 0 to 9:59:99. Five 4-bit outputs in this macro

represent the stopwatch time digits.

Synthesizing the Design

You've been utilising Xilinx Synthesis Technology (XST) for syntactic verification so far. The

design will then be synthesisedusingSynplify/Synplify Pro,either XST or Precision software. The

netlistsynthesis software takes the HDL code from the design and evoloves a sustained netlist type

(EDIF or NGC) for the Xilinx tools for execution. To generate the netlist, the synthesising tool

goes through the series ofbroad phases (which are further broken down by all synthesis tools):

Analyze/Check Syntax

The origin code is checked by the syntax

1. Compiles the HDL code by translating and optimising it through a bunch of elements that the

compilersystem can recognise.

2. Map Transforms the fundamental elements of the target technology into the elements obtained

during the compilation step.

During the design flowthe simulation tool may be upgraded as desired.To change the synthesis

tool, perform the following steps:

1. Select the targeted part in the Project Navigator Design panel's Hierarchy pane.

2. Choose properties of the design from the context menu.

3. In the Properties of the design dialogue box, choose the Synthesis Tool value then choose the

synthesis tool that you desire from the available choices. using the pull-down arrow.

Note: If your synthesis tool does not appear in the record, you might not had theinstalled software

installed or conFigd in the ISE Design Suite. In the Preferences dialogue box, you can adjust the

synthesis tools. Select Edit > Preferences, then expand ISE General and then choose Tools.

The execution material gets wiped out when the proposed flow is changed.. In this tutorial, you

have not so far generated any implementation data. If you want to make a backup of a project that

contains execution material, Xilinx suggests users to made areplica of the project using File >

Copy Project prior to proceeding.

29

 Fig 21: Choosing a Synthesis Tool and XST to Create the Design

After users generated and analysed the layout, the following stage is to synthesise it. The

HDL documents are converted onto circuits and optimisedaccording to the intended design

during synthesis.

The following processes are available for synthesis with XST:

• View RTL Schematic Displays a schematic representation of your RTL

netlist.

• View Technology Schematic Displays a schematic representation of your

technology netlist.

• Check Syntax Verifies that the HDL code has been admitted correctly.

• Produce a Post-Synthesis Simulation Model

Based on the synthesis netlist, it generates HDL simulation models.

Entering Synthesis Options

Synthesis settings allows to change the behaviour of synthesis tool to optimise it for the necessity

of the design. Controlling synthesis to achieve optimisations depending on area or speed is a

popular approach. Additional possibilities include managing the optimum fanout of a flip-flops

result or choosing the layout's intended rate.

To access synthesis possibilities, perform the following steps:

1. In the Project Navigator Design panel's Hierarchy pane, choose stopwatch.vhd.

(Or stopwatch.v).

2. Hover your mouse on synthesize activity in the Processes window and choose Process

Properties.

3. On the Synthesis Options tab, change the Netlist Hierarchy attribute to Reconstuct.

To utilize this property, make sure the Property presentation type is set as high

4.Press the OK button.

30

6.4 Synthesizing the Design

Now prepared to synthesisethe design. To produce a compliant netlist from the HDL code,

perform the following:

1.Select stopwatch.vhd from the Hierarchy window.(or stopwatch.v). click twice on the

Synthesize method in the Procedure pane. Using the RTL/Technology Viewer XST, you can

create the schematic layout of the HDL code you provided. A schematic representation of the

code aids in the analysis of your design by presenting a visual relationship among the many

elements detected by XST. The two types of schematic depiction are as follows:

• RTL view

The HDL code is pre-optimized.

• Technology view

View of the HDL design after it has been translation onto the destination technology. Do the

following to see a diagrammatic layout of your HDL code:

1. Expand Synthesize in the Processes pane and double-click View RTL Schematic or see

Technology Schematic.

2. Select Start with the Explorer Wizard if the Set RTL/Tech Viewer Startup Mode dialogue

opens.

3. On the Create Schematic start page, choose the clk_divider and

lap_load_debounceelements within the possiblecomponents list, then press the Add icon to

add them to the Chosen Components table.

4.Selectthe Create Schematic option.

Fig 22:RTL Schematic

You can use the schematic viewer to choose which parts of the outline to exhibit as schematics.

Double-click on the icon to keep into the layout and explore the various design features and

interaction. Right-click the schematic to see the several functions available in the schematic

viewer.

31

 CHAPTER 7

PROPOSED WORK

In this project, we have analyzed 16-bit Vedic multiplier using higher order compressors. Fig 23

depicts that how partial products are grouped to compressor adders for addition.

Fig 23: Compressor based 16-bit multiplier

32

In this approach, 16-bit multiplication is implemented using 4:3, 5:3, 6:3, 7:3, 8:4, 9:4,

10:4, 11:4, and 15:4 compressors, as shown in Fig 1. A half adder and a full adder are accustomed

to sum up 5 bits when employing a 5:3 compressor, as an example. The situation with other

compressors is similar. The Wallace tree multiplier method is accustomed to resolve the outcome

of binary number multiplication. This approach transfers the result to the following stage after

adding binary bits.

A full adder will generate carry and sum as its output. The sum is transferred to same level

of next stage and carry is transferred to next level of next stage. In a similar manner, a 5:3

compressor will produce three outputs: sum, carry, and auxiliary carry. Now that the sum has been

transferred to same level of next stage, the carry has been moved to the next stage of next level,

and the auxiliary carry has been moved second next level of the next stage. We also employ 6:3,

7:3, 8:4, 9:4, and 10:4 compressors. Any bits that are still ungrouped after grouping are moved

immediately to the next stage.

For instance, if we use an 11:4 compressor to group 12 bits, one bit remains ungrouped.

The first four output bits of the 11:4 compressor use the same process as before, and the left bit is

passed immediately to the following stage. If there aren't enough bits after grouping to add in a

compressor, we add 0 as a bit instead. For instance, two spots are left if we aggregate 13 bits using

a 15:4 compressor. So, we give the compressor two "0" bits. The outputs are transferred to the

succeeding next step till we achieve the ultimate result, which is depicted in the picture. In a

similar manner, we group the bits of the next stage using the same technique. There are three

phases to 16-bit multiplication. At the very end, we employ a parallel adder.

33

CHAPTER 8

 RESULTS AND DISCUSSIONS

In this chapter, 16-bit Multiplier using hybrid full adders are simulated using Xilinx Vivado

design suite. The performance comparison of proposed work on various FPGA families is

observed in terms of area and power.

7.1 SIMULATION RESULTS OF 16 BIT MULTIPLIER USING HYBRID FULL

ADDER:

A) Using ARTIX 7 FPGA:

 Fig 24: Device and Package selection of Artix7 FPGA

 Fig 25: Area utilization report

34

Fig 26: Delay Report

Fig 27: Area Utilization Report

7.2 VIRTEX 4

Fig 28: Device and Package selection of Virtex4 FPGA

35

 Fig 29: Area utilization report

Fig 30: Delay Report

Fig 31: Power Report

36

7.3 Spartan 6

Fig 32: Device and Package selection of Spartan 6 FPGA

Fig 33: Area utilization report

Fig 34: delay Report

\

37

7.4 VIRTEX 6 LOW POWER:

Fig 36: Device and Package selection of Virtex 6 low power FPGA

Fig 37: Area Utilization Report

Fig 38: Delay Report

38

Fig 39: Power Report

Table 1:Manual area utilization report of 16-bit multiplier
Type of compressor No of compressors

Half adder 34

Full adder 27

4:3 18

5:3 5

6:3 2

7:3 2

8:4 2

9:4 2

10:4 2

11:4 4

15:4 7

Table2: Implementation of 16-bit multiplication on various FPGA families

39

CONCLUSION

In this project, 16-bit multiplier based on higher order compressor is developed and

implemented with Artix-7 FPGA. To further improvement in performance, a hybrid full

adder is introduced in higher order compressors and the same will be used in 16-bit

multiplier. By using Artix-7 FPGA we can observe that there is 57.82%enhancement in delay

compared to Spartan 6, 60.7% enhancement in delay and 89.68%enhancementin power

compared to Virtex-4. So far as power concern, Spartan 6 and Artix-7 provide better

performance compared to Virtex-4 family. From the simulation results it is observed that

multiplier based on hybrid full adder allows better results in respect to power and area.

40

References

[1] Y.Kim, Y.Zhang, and P. Li, ”An energy efficient approximate adder with carry skip for

error resilient neuromorphic VLSI systems,” in proc. of International conference on

Computer-Aided Design (ICCAD), USA, 2013, pp. 130-137.

[2] D. Baran, M. Aktan, and V.G. Oklobdzija,”Energy Efficient Implementation of Parallel

CMOS Multipliers with Improved Compressors,” in proc. ACM/IEEE International

Symposium on LowPower Electronics and Design (ISLPED),USA, 2010, pp. 147-152.

[3] S. Veeramachaneni, K. Krishna M, L. Avinash, S. R. Puppala, and M.B. Srinivas, ”Novel

Architectures for High-Speed and Low-Power 3-2, 4-2 and 5-2 Compressors,” in proc. Of

International Conference on VLSI Design (VLSID),Bangalore,2007, pp.324-329.

[4] R. Menon, and D. Radhakrishnan, ”High performance 5: 2 compressor architectures,” in

proc. of IEE - Circuits, Devices and Systems, vol. 153,no. 5, pp. 447-452, Nov 2006.

[5] A. Pishvaie, G. Jaberipur, and A. Jahanian,”High Performance CMOS (4:2)

compressors,” Int.journal of electronics, vol. 101, no. 11,1511-1525, Jan. 2014.

[6] O. Kwan, K. Nawka, and E. SwartzlanderJr,” A 16 bit by 16 bit MAC Design Using Fast

5:3 Compressor Cells,” Journal of VLSI Signal Processing, vol. 31, no. 2, 77-89,July 2002.

 [7] S. Mehrabi, R.F Mirzaee, S. Zamanzadeh, K. Navi, and O. Hashemipour,”Design,

analysis, and implementation of partial product reduction phase by using wide m:3 (4 m 10)

compressors,” Int. Journal of High Performance System Arch, vol. 4, no. 4,231-241,Jan.

2013.

 [8] A. Dandapat, P.Bose, S. Ghosh, P Sarkar, and D. Mukhopadhyay,(March 2009), ”A 1.2-

ns 16 x 16 bit binary multiplier using high speed compressors,” World Academy of Science,

Engineering and Technology, vol. 39, 627-632,March 2009.

[9] R. Marimuthu, M. Pradeepkumar, D. Bansal, S. Balamurugan, and P.S Mallick,”Design

of high speed and low power 15-4 compressor,” in proc. International Conference on

Communication and Signal Processing (ICCSP),Melmaruvathur, 2013, pp. 533-536.

[10] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi”Approximate XOR/XNOR-based

adders for inexact computing,” in proc. of IEEE International Conference on Nanotechnology

(IEEE - NANO),China,2013,pp. 690 - 693.

[11] H. Jiang, J.Han, and F. Lombardi,”A comparative review and evaluation of approximate

adders,” in proc. of ACM Great Lakes Symposium on VLSI(GLSVLSI),New York, 2015

pp.343 - 348.

[12] C. Liu, J. Han, and F. Lombardi,”A Low-Power, HighPerformance Approximate

Multiplier with Configurable Partial Error Recovery,” in proc. of International Conference on

Design Automation and Test in Europe (TEST).Germany, 2014, pp. 1-4.

[13] Y. Bansal, and C. Madhu,”A novel high-speed approach for 16x16 vedic multiplication

with compressor adders,” Computers and Electrical Engineering, vol. 49, 39-49,Jan. 2016.

[14] A. Momeni, J. Han, P. Montuschi, and F. Lombardi,”Design and analysis of

approximate compressors for multiplication,” IEEE Trans.On Computers, vol. 64, no. 4,984-

994, Apr. 2015.

[15] Valentina Bianchi,Ilaria De Munari, “A modular vedic multiplier architecture for model-

based design and deployment on FPGA platforms” Microprocessors and Microsystems

vol.76,2020

[16] Juili borkar,Dr.U.M.Gokhale,”Design and simulation of low power and area efficient

16x16 bit hybrid multiplier,”International Journal of Engineering Development and

Research,vol.5,2017

[17] Sivanandam K, Kumar P,” Design and Performance Analysis of Reconfigurable

Modified Vedic Multiplier with 3-1-1-2 Compressor”, Microprocessors and Microsystems,

Volume 65, March 2019, Pages 97-106

41

[18] Yogita Bansal, Charu Madhu,” A novel high-speed approach for 16 × 16 Vedic

multiplication with compressor adders”, Computers and Electrical Engineering 49, pp. 39–49,

2016

 [19] Valentina Bianchi, Ilaria De Munari, “A modular Vedic multiplier architecture for

model-based design and deployment on FPGA platforms”,Microprocessors and

Microsystems76(2020)103106(INCET)B

[20]Rakesh H.M and G.S.Sunitha,”Design and Implementation of Novel 32-Bit MAC Unit

for DSP Applications”,2020 International Conference for Emerging Technology elgaum,

India. Jun 5-7, 2020

	ff17882444bc06eb94ed4a7fae83aa6f0e6cd104d81f762528b0528bcd1a0309.pdf
	9b874f0b88e306646bfe5f6608170120aa599863f180e4d3ad931e7755633180.pdf

	a75c77ebc759706487b06d0c6d1cdd0c358f5ebab43644aae1d4f62c47b2d1cc.pdf
	ff17882444bc06eb94ed4a7fae83aa6f0e6cd104d81f762528b0528bcd1a0309.pdf
	9b874f0b88e306646bfe5f6608170120aa599863f180e4d3ad931e7755633180.pdf

