
  REAL-TIME OBJECT TRACKING USING  

                      ARTIFICIAL INTELLIGENCE 
 

  A Project report submitted in partial fulfillment of the requirements for the award of  

 

degree of 

 

   BACHELOR OF TECHNOLOGY  

 

  IN 

 

 ELECTRONICS AND COMMUNICATION ENGINEERING 

 

 Submitted by  

 

                      P. Rajasri (319126512042)                    M. Deepika (319126512033)  

 

      S. Yeswanth (319126512056)               V. Krishna Vamsi (319126512064)                           

                                                      

     

    Under the guidance of  

 

     Dr. B. Jagadeesh 

 

         Professor, Department of ECE 

 

 

 

      
 

 

 

  DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING  

 

        ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES 

 

     (UGC AUTONOMOUS) 

 

 (Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ 

Grade) Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)  

2022-2023





 

                                                                        ii 
 

     ACKNOWLEDGEMENT 

 

 
We would like to express our deep gratitude to our project guide Dr. B. Jagadeesh, Professor, 

Department of Electronics and Communication Engineering, ANITS, for his guidance with 

unsurpassed knowledge and immense encouragement. We are grateful to Dr. B. Jagadeesh Head 

of the Department, Electronics and Communication Engineering, for providing us with the required 

facilities for the completion of the project work.  

 

We are very much thankful to the Principal and Management, ANITS, Sangivalasa, for their 

encouragement and cooperation to carry out this work.  

 

We express our thanks to all teaching faculty of Department of ECE, whose suggestions during 

reviews helped us in accomplishment of our project. We would like to thank all non-teaching staff 

of the Department of ECE, ANITS for providing great assistance in accomplishment of our project. 

 

 We would like to thank our parents, friends, and classmates for their encouragement throughout 

our project period. At last, but not the least, we thank everyone for supporting us directly or 

indirectly in completing this project successfully. 

 

 

 

 

 

                                       

                                                                                   

 

 

 

 

                                                                      Project students: 
                                                                                      P. Rajasri (319126512042)  

                                                                                         M. Deepika (319126512033)  

                                                                                           S. Yeswanth (319126512056) 

                                                                                                   V. Krishna Vamsi (319126512064) 

 

 

 

 

 



 

                                                                        iii 
 

   CONTENTS  

TITLE                                                                                                       Page.No 
 

 ABSTRACT                                                                                                                  vi                                       

 

CHAPTER 1 INTRODUCTION                                                                                 01 

 

1.1 Project objective                                                                                                        01 

1.2 Motivation                                                                                                                 01 

 

CHAPTER 2 OBJECT DETECTION AND TRACKING                                       02 

 

2.1 Introduction                                                                                                              02 

2.1.1 Modes and types of object detection                                                                     02  

2.1.2 Why is object detection important?                                                                       02 

2.1.3Introduction to object tracking                                                                              03 

2.2 Digital image processing                                                                                          03 

2.2.1 What is DIP?                                                                                                         03 

2.2.2 What is image?                                                                                                      04 

2.2.3 Why image processing?                                                                                        05 

2.3 Gray scale image                                                                                                      06 

2.4 Color image                                                                                                              06 

2.5 Related technology                                                                                                   07 

2.5.1 R-CNN                                                                                                                  07 

2.5.2 Single shot muti object detector                                                                            07 

2.5.3 Alexnet                                                                                                                  08 

2.5.4 YOLO                                                                                                                   08 

2.5.5 VGG                                                                                                                       09 

2.5.6 Mobilenets                                                                                                             09 

2.5.7 Tensor flow                                                                                                            10 

2.6 Applications of object tracking                                                                                 10 

2.7 Real time object tracking workflow and feature extraction.                                     11 

 

CHAPTER 3 DEEP LEARNING                                                                                12 

 

3.1 Introduction                                                                                                                12 

3.2 Feed forward and feedback network’.                                                                        14 

3.3Weighted sum                                                                                                               14 

3.4 Activation sum                                                                                                            15 

3.4.1 Threshold function                                                                                                   15 

3.4.2 Sigmoidal function                                                                                                   15 

3.4.3 Hyperbolic function                                                                                                  15 

3.4.4 Rectifier function                                                                                                      15 

 

CHAPTER 4 YOLO                                                                                                         17 

 

4.1 Introduction                                                                                                                   17 

4.2 YOLO versions                                                                                                             18 

4.2.1 YOLO version1                                                                                                          19 

4.2.2 YOLO version2                                                                                                           19 

4.2.3 YOLO versions3                                                                                                         20 



 

                                                                        iv 
 

TITLE                                                                                                    Page.No 

 

4.2.4 YOLO version4                                                                                                       21                                                                                                         

4.2.5 YOLO version5                                                                                                       21 

4.3 YOLO v4 architecture                                                                                                22 

4.3.1 Prediction of object using YOLO                                                                            24 

4.4 Methodology                                                                                                               26 

4.5 Convolution neural network                                                                                        28 

4.5.1 How do CNN work?                                                                                                 29 

4.6 CNN layers                                                                                                                  30 

4.6.1 Convolution layer                                                                                                     30 

4.6.2 Pooling layer                                                                                                            32 

4.6.3 Fully connected layer                                                                                               34 

4.7 Artificial neural network                                                                                             36 

4.7.1 Neural network                                                                                                         37 

4.8 Training of CNN                                                                                                         38 

4.9 CNN architecture                                                                                                         39 

         

CHAPTER 5 SOFTWARE TOOLS                                                                              41 

 

5.1 Introduction                                                                                                                  41 

5.2 Open CV                                                                                                                       42 

5.3 Google Colab                                                                                                                43 

5.4 Python                                                                                                                           44 

5.4 Applications of open CV                                                                                              45 

5.5 Applications of google Colab.                                                                                      45 

5.6 Libraries in open CV                                                                                                    46 

 

 

CHAPTER 6 RESULTS AND DISCUSSIONS                                                              48 

 

6.1 Result                                                                                                                             48 

6.2 Conclusion                                                                                                               54 

 

REFERENCES                                                                                                             56 

  



 

                                                                        v 
 

LIST OF FIGURES 
 
Fig.no        Title                                                                                                      Page.No 

 
2.2.2         Digital image                                                                                             04 
2.3            Composition of RGB from three gray scale images                                  06                       

4.1            YOLO timeline                                                                                          18 

4.3            YOLO v4 architecture                                                                                     23 

4.3.1         Intersection over union                                                                               24 

4.3.2        Anchor boxes                                                                                               25 

4.3.3        Class probability mapping                                                                           26 

4.4           block diagram for object tracking                                                                27 

4.5           CNN                                                                                                             29 

4.6.1        Convolution layer                                                                                        30 

4.6.2        Pooling layer                                                                                                33 

4.6.3        Fully connected layer                                                                                   34 

4.7           Neural network                                                                                             36 

4.7.1        A simple neural network                                                                               37 

4.8.1        Training process of CNN                                                                              38 

4.9           Architecture of CNN                                                                                     40 

6.1           Object detection using YOLO V3                                                             48 

6.2           Object detection using YOLO V4                                                             49 

6.3.1        Images of object tracking in a video at different frames                           49 

6.3.2        Images of object tracking in a video at different frames                           50 

6.3.3        Images of object tracking in a video at different frames                           50 

6.3.4        Images of object tracking in a video at different frames                           51 

6.3.5        Images of object tracking in a video at different frames                           51 

6.4           Illustration of experimental set up                                                             54 

6.5          Object detection by the model in the video                                                53 

 
 

 



 

                                                                        vi 
 

                                    ABSTRACT 

 

 

Modern world is drenched with an enormous amount of visual data. Object tracking is the keystone 

of many computer vision applications. Identifying objects from an image or a video sequence is a 

primary and demanding task in today’s world. The purpose of visual object tracking in successive 

video frames is to detect or connect target objects. It has many applications in the real world, 

including surveillance, face detection medical image processing, traffic control and analysis, and 

many more. While many approaches and breakthroughs in this field have led to the evolution of a 

huge set of unique algorithms, it remains a very stimulating problem. Due to the ginormous set of 

environmental and other factors, it is next to impossible to propose a global tracking algorithm. 

However, the selecting the most suitable algorithm does not depend only on the concept of the 

algorithm but also on its implementation. In this paper, we try to use YOLO or “You Only Look 

Once” with several configurations of the moving image feature to recognize objects. Additionally, 

we suggest a system that, by adaptively regulating the cycle of object detection and tracking, can 

provide real-time performance in different edge computing contexts. 

 

 

Keywords: Object, detection, tracking, Artificial intelligence, Open CV, python 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                        1 
 

 

                      CHAPTER  1 

 

                   INTRODUCTION 

 
1.1 PROJECT OBJECTIVE: 

              Object detection is a crucial task that involves finding one or more objects of interest in still images 

or video data. It encompasses a wide range of methods, including image processing, pattern 

recognition, artificial intelligence, and machine learning, to accurately identify and locate objects 

within an image or video frame, it offers a wide range of potential applications, including improved 

human-computer interaction, monitoring militarily restricted areas, alerts of harmful commodities 

in manufacturing, and preventing traffic accidents. Balance between accuracy and computing costs 

is a challenge since multi-target detection application scenarios in the real world are frequently 

complicated and varied. 

 

                   However, achieving a balance between accuracy and computing costs is a significant challenge in 

object detection. Real-world scenarios can be complex and varied, with multiple targets and varying 

environmental conditions, which can affect the accuracy and efficiency of object detection 

algorithms. Finding the right trade-off between accuracy and computational resources is essential 

to ensure that object detection systems are practical and effective in real-world applications. 

 

1.2 PROJECT OUTLINE: 

       Object tracking is increasingly important as technology advances daily. In autonomous driving, 

multiple object tracking is crucial because it allows for the detection and prediction of other vehicles' 

and pedestrians' movements in the actual world. Blind persons have many difficulties, yet this real-

time tracking enables them to reach their destination independently. Drivers find it difficult to see 

items on the track in a railway system at night, thus by using real-time object detection, we can 

easily find the objects and avoid railway accidents. Therefore, we made the decision to perform the 

REAL-TIME OBJECT TRACKING USING ARTIFICIAL INTELLIGENCE. We read a few 

publications in this field because we are interested in this project. As a result, we were extremely 

inspired to create a system that could identify and track things in a real-time setting. 

 

 

 



 

                                                                        2 
 

                         CHAPTER 2 

 

OBJECT DETECTION AND TRACKING 

 
2.1INTRODUCTION: 
 Object detection and image recognition are related but distinct computer vision techniques. Object 

detection goes beyond image recognition by not only identifying objects in an image but also 

predicting their locations with bounding boxes. Object detection algorithms use machine learning 

or deep learning techniques to analyze images or videos and identify objects of interest, and then 

draw bounding boxes around them to indicate their precise locations. These bounding boxes are 

often accompanied by labels that describe the objects detected, providing more detailed information 

about the objects in the image compared to image recognition, which simply assigns labels to entire 

images without identifying specific objects or their locations. Object detection is widely used in 

various applications such as autonomous vehicles, surveillance systems, facial recognition, and 

augmented reality, among others. 

 

2.1.1 Modes and types of object detection: 

Traditional machine learning-based methods for object detection often involve handcrafted feature 

engineering, where various aspects of an image, such as color histograms or edges, are extracted as 

features, and then these features are used as input into a separate regression model to predict the 

location of objects and their labels. These methods can work well in certain scenarios but may 

require manual tuning and are limited by the effectiveness of the handcrafted features. 

 

In contrast, deep learning-based techniques, such as convolutional neural networks (CNNs), have 

emerged as state-of-the-art approaches for object detection. CNNs are capable of automatically 

learning relevant features from raw image data during the training process, eliminating the need for 

handcrafted features. CNNs can learn complex patterns and representations from large amounts of 

labeled data, making them highly effective in detecting objects with high accuracy. 

 

2.1.2 Why is object detection important? 

In that it enables us to comprehend and evaluate scenes in photos or videos, object detection is 

closely tied to other related computer vision techniques like image recognition and image 

segmentation. 



 

                                                                        3 
 

Deep learning-based object detection techniques, such as region-based CNNs (R-CNN), You Only 

Look Once (YOLO), and Single Shot MultiBox Detector (SSD), have become state-of-the-art 

methods for accurate and real-time object detection in various applications, such as autonomous 

driving, surveillance, and image retrieval systems, among others. They offer higher accuracy and 

faster processing speeds compared to traditional ML-based methods, making them the preferred 

choice in many practical scenarios. 

 

What but there are significant variations. Image segmentation develops a pixel-level comprehension 

of a scene's elements while image recognition just produces a class label for an identified object. 

The distinctive capacity of object detection to locate items inside an image or video sets it apart 

from these other tasks. This enables us to count such things and later track them. 

 Crowd counting 

 Self-driving cars 

 Video surveillance 

 Face detection 

 Anomaly detection 

 

2.1.3 INTRODUCTION TO OBJECT TRACKING: 

Finding and following a particular object over time in a video or picture sequence is called object 

tracking. It entails identifying the object in each frame, connecting it to the appropriate object across 

frames, and calculating its velocity and other attributes. 

Object tracking has a wide range of uses, such as in robotics, augmented reality, self-driving 

automobiles, and video surveillance. There are numerous methods for tracking objects, from 

straightforward motion-based strategies to more sophisticated deep learning systems. Dealing with 

occlusions, changes in appearance, and monitoring several objects at once are a few of the 

difficulties in object tracking. 

 

2.2 DIGITIAL IMAGE PROCESSING: 

The spectrum of computerized picture preparation is represented by the need for extensive test effort 

to increase the viability of suggested solutions for a particular problem. The extensive amount of 

testing and experimentation that is typically required before arriving at an acceptable solution is a 

key characteristic concealed in the design of picture preparation frameworks. This trademark 

explains that it generally takes a significant amount of planning and quick modelling to reduce the 

time and cost needed to arrive at an appropriate framework execution. 



 

                                                                        4 
 

 

2.2.1 What is DIP? 

Digital image processing is a field of study that involves analyzing, modifying, enhancing, and 

interpreting digital images using various algorithms and techniques. It has many benefits over 

analog image processing, as it allows for a wider range of algorithms to be applied to the input data, 

and it can prevent issues like noise and distortion from accumulating during processing. 

 

Digital image processing is a multidimensional field, as images can exist in two dimensions (e.g., 

grayscale or color images) or even more dimensions (e.g., volumetric medical images). It has been 

greatly influenced by advancements in computers, which have provided the computational power 

necessary for processing large amounts of image data. Additionally, the development of discrete 

mathematics theory has played a crucial role in the advancement of digital image processing 

algorithms and techniques. 

 

Digital image processing has a wide range of applications, including computer vision tasks such as 

object detection, image recognition, and image segmentation, as well as remote sensing, medical 

imaging, multimedia processing, and many other fields. It has revolutionized many industries and 

has become an essential tool in various scientific, industrial, and commercial applications. 

2.2.2 What is an image? 

Images can be captured and saved using a variety of media, including pictures, paintings, drawings, 

and digital data. Images are a visual depiction of an object or scene. 

An picture is often represented in digital form as a rectangular array of pixels, each of which has a 

unique colour or grayscale value that affects how the image looks as a whole. An picture's resolution 

is determined by how many pixels make up the image; higher resolution images have more pixels 

and, consequently, more detail. 

Information that can be conveyed through images includes patterns, textures, colors, and the look 

of things or scenes. They are employed in numerous fields, including those of photography, 

videography, computer graphics, and medical imaging processing computer vision applications 

 



 

                                                                        5 
 

              

 

 

                              Fig 2.2.2 Digital image 

Processing of an image: 

Processing of an image involves three levels. They are low level, medium level, high level. 

 

Low level processing: 

 Pre-processing to remove noise. 

 Contrast enhancement 

 Image sharpening 

  Medium level processing: 

 Segmentation 

 Edge detection 

 Object extraction 

High level processing: 

 Image analysis 

 Scene interpretation 

2.2.3 Why image processing? 

Various uses for image processing exist, depending on the application. The most frequent causes 

for using image processing are listed below: 

 Image processing can be used to enhance an image's visual quality, for instance by lowering 

noise, boosting contrast, or adjusting colour balance. 



 

                                                                        6 
 

 Information extraction: Image processing can be used to extract information from an image, 

including the identification of objects or regions of interest, measurement of attributes like 

length or area, and the detection of patterns or features. 

 Compression: Image processing can be used to reduce the size of image data, which is 

essential for effectively transmitting and storing huge volumes of image data. 

 Identification and recognition: Image processing can be used for tasks like object, licence 

plate, or facial recognition, which have significant applications in automation, security, and 

surveillance. 

 Medical imaging: To assist in diagnosis and treatment planning, image processing is widely 

employed in medical imaging, such as in X-ray, CT, and MRI scans. 

 Robotics: Robots can sense and interact with their surroundings by using image processing, 

for as by identifying and tracking objects or navigating through challenging areas 

The ability to extract usable information from images, improve visual quality, and enable 

machines to perceive and interact with their surroundings are all made possible by image 

processing, which is a potent tool that may be utilized in a variety of applications. 

 

2.3 GRAY SCALE IMAGE: 

An image that is purely grayscale has shades of gray, ranging from black to white, as its only colors. 

Each pixel in a digital grayscale image is represented by a single brightness value, with lower values 

denoting darker shades and higher values denoting lighter shades. 

Since grayscale images may be saved and processed more effectively than color images while still 

transmitting crucial information about the intensity or brightness of the underlying data, they are 

frequently utilized in a variety of industries, including medical imaging, computer graphics, and 

image processing. 



 

                                                                        7 
 

                   

  

 

                                    Fig 2.3   Composition of RGB from three gray scale images  

 

2.4 COLOR IMAGE: 

As opposed to a grayscale image, which just contains different shades of gray, a color image is one 

that contains colors. Each pixel in a digital color image has numerous values that represent the 

intensities of the image's primary hues, which are commonly red, green, and blue. (RGB). 

Because they offer more visual information than grayscale images and are more suited to 

representing real-world landscapes and objects, color images are frequently utilized in a variety of 

industries, including photography, computer graphics, and medical imaging. Color images are 

valuable in a variety of image processing and computer vision applications because they may be 

utilized to extract additional information through color-based segmentation or feature extraction. 

 

2.5 RELATED TECHNOLOGY: 

2.5.1 R-CNN: 

The object detection technique R-CNN (Region-based Convolutional Neural Network) is based on 

deep learning. Ross Girshick, et al. introduced it in a study published in 2014. R-CNN is a multi-

stage approach that first creates candidate regions that could contain an object, or object proposals, 

and then uses a CNN to extract features from each suggested region. (Convolutional Neural 

Network). The object is then classified using these characteristics, and its placement within the 

suggested region is clarified. 

Because it was able to attain more accuracy and better localization than earlier object detection 

techniques like sliding windows and selective search, R-CNN represented a substantial 



 

                                                                        8 
 

improvement. Then came quicker R-CNN, which increased R-CNN's efficiency and speed by 

sharing Using a region proposal network (RPN) and convolutional features, object suggestions are 

produced in a single forward pass. Since then, R-CNN has undergone significant advancements 

through several versions, including Mask R-CNN, which expands the algorithm to predict object 

masks, and Cascade R-CNN, which employs a cascade of classifiers to further enhance accuracy. 

R-CNN and its variations are still widely utilized in many fields, including surveillance, robotics, 

and self-driving automobiles, where they are effective methods for object detection. 

 

2.5.2 SINGLE SHOT MULTI OBJECT DETECTOR: 

A deep learning-based item recognition algorithm called Single Shot Multibox Detector (SSD) can 

recognize and categorize numerous objects in a single neural network pass. SSD is a one-stage 

detector, which means that it simultaneously creates object proposals and classifies them. Wei Liu, 

et al. first mentioned it in an article published in 2016. In order to produce item proposals at various 

scales and aspect ratios, SSD first extracts features from a picture using a convolutional neural 

network and then applies a set of default bounding boxes to the features. The final item detections 

are created by classifying and honing these proposals. 

The term "multibox" refers to the handling of objects of varied sizes and forms using default boxes 

(or anchors) of various sizes and aspect ratios. This method makes SSD more effective than older 

two-stage detectors like R-CNN by enabling it to recognize objects at various scales and aspect 

ratios in a single pass. 

Overall, SSD is a well-liked and successful object identification method that has been utilized in a 

variety of applications, including robotics, surveillance, and autonomous vehicles. 

 

2.5.3 ALEXNET: 

AlexNet is an image categorization system built using deep convolutional neural networks. It was 

created by Geoffrey Hinton, Alex Krizhevsky, and Ilya Sutskever and presented in a paper in 2012. 

On the ImageNet dataset, which has millions of annotated photos and is considered as a benchmark 

for image classification, AlexNet was one of the first deep learning models to reach state-of-the-art 

performance. 

Eight layers, comprising five convolutional layers and three fully linked layers, total 60 million 

parameters in the AlexNet architecture. Additionally, it makes use of a number of significant 

methods, including dropout regularisation to stop neuronal co-adaptation and rectified linear units 

(ReLU) for activation functions. 



 

                                                                        9 
 

A breakthrough in deep learning was made when AlexNet was able to considerably increase the 

accuracy of picture classification in comparison to earlier techniques. Due to its performance, later 

deep learning models like VGG, ResNet, and Inception were made possible. 

 

2.5.4 YOLO: 

Joseph Redmon, et al. created the deep learning-based object detection method YOLO (You Only 

Look Once) in 2016. YOLO is a one-stage object detector, which implies that in a single forward 

pass of the neural network, it directly predicts bounding boxes and class probabilities for objects in 

a picture. Based on a convolutional neural network, the YOLO method predicts multiple bounding 

boxes, each with a confidence score and class probabilities, for each cell in a grid formed by the 

input image. The class probabilities describe the likelihood that the object belongs to each of the 

specified classes, while the confidence score represents the likelihood that an object is present in 

the bounding box. 

YOLO is renowned for its efficiency and speed because it can process photos in real time using 

common technology. However, especially for little items or objects that are close to one another, its 

accuracy may be lower than some alternative object identification methods, such as two-stage 

detectors like R-CNN. Since its debut, YOLO has undergone multiple iterations that have addressed 

some of its shortcomings and increased its accuracy. These iterations include YOLOv2, YOLOv3, 

and YOLOv4. Real-time object detection is crucial in many applications, including surveillance, 

robotics, and self-driving automobiles, where YOLO and its variants are commonly used. 

 

2.5.5 VGG: 

A deep convolutional neural network architecture called VGG (Visual Geometry Group) was 

created for image recognition and categorization. Karen Simonyan and Andrew Zisserman from the 

University of Oxford first discussed it in an article published in 2014. VGG is distinguished by its 

depth, with models ranging from VGG11 to VGG19, which contain 11 to 19 layers, respectively, 

and its use of relatively small (3x3) convolutional filters. Max pooling, fully linked layers, and the 

rectified linear unit (ReLU) activation function are further techniques used by VGG. Following 

VGG's state-of-the-art performance in the ImageNet Large Scale Visual Recognition Challenge in 

2014, many additional computer vision projects have adopted its design as a benchmark.  

VGG is noted for its vast number of parameters, which can result in lengthy training times and high 

memory needs, but it is also known for its computational complexity. VGG has made a significant 

contribution to the field of deep learning overall by demonstrating the efficacy of using deep 

architectures and very small convolutional filters for image recognition and classification. 



 

                                                                        10 
 

 

2.5.6 MOBILENETS: 

A family of effective deep convolutional neural network designs called Mobile Nets was created for 

embedded and mobile vision applications. It was first mentioned in a 2017 article by Google 

researchers Andrew G. Howard et al. 

Mobile Nets are intended to perform a variety of computer vision tasks, including object detection 

and image classification, with high accuracy while being smaller and faster than conventional deep 

neural networks. Mobile Nets are based on a collection of lightweight operations that lower the 

network's computational burden and parameter count. 

By dividing a regular convolution into a depth wise convolution and a pointwise convolution, 

Mobile Nets' depth wise separable convolutions are used. The pointwise convolution merges the 

output of the depth wise convolution into a new set of channels after the depth wise convolution 

filters each channel of the input separately. With this method, the network's calculation and 

parameter requirements are reduced. There are various variations of mobile nets, including mobile 

net, mobile net v2, and mobile net v3. Every iteration is more accurate and effective than the one 

before it. In many different applications, including object detection and recognition on mobile 

devices, robots, and self-driving automobiles, where processing speed and memory utilization are 

crucial factors, Mobile Nets have been extensively used. 

 

 

 

2.5.7 TENSOR FLOW: 

An open-source software library called TensorFlow is used for differentiable programming and 

dataflow across a variety of tasks. It is generally used to create and train deep neural network models 

for machine learning, which are utilized for applications like speech and picture recognition, natural 

language processing, and autonomous vehicles. The Google Brain team created TensorFlow, which 

was originally made public in 2015. It offers a complete set of tools and interfaces for developing 

and deploying machine learning models, including higher-level APIs for both novices and experts 

as well as lower-level APIs for modifying models and trying out novel approaches. 

TensorFlow is renowned for its adaptability, efficiency, and capacity for distributed training across 

a number of GPUs or CPUs. It also comes with a host of helpful features, including support for 

model deployment across many platforms, including mobile devices and the web, data pre-

processing and data augmentation, visualization tools, and more. 



 

                                                                        11 
 

TensorFlow features a robust ecosystem of community-contributed tools and extensions in addition 

to its core library, such as TensorFlow Hub, TensorFlow Lite, and TensorFlow.js, which add extra 

functionality for certain use cases and platforms. With applications in a variety of industries and 

fields, TensorFlow has grown to be one of the most well-liked and commonly used machine learning 

frameworks in the world. 

 

2.6 APPLICATIONS OF REAL TIME OBJECT TRACKING: 

Real-time object tracking has a wide range of applications in various fields. Here are some 

examples: 

Surveillance and Security: The use of real-time object tracking in video surveillance systems 

allows security staff to immediately take action by following suspicious people or items in real-

time. 

Automotive Industry: Advanced driver assistance systems (ADAS) can use object tracking to 

detect and track automobiles, pedestrians, and other things, which helps to reduce accidents and 

enhance safety. 

 Robotics: Robots can interact with their environment more successfully and carry out complex 

tasks by using real-time object tracking to find and track items. 

Medical Imaging: Medical imaging apps that use object tracking can follow and assess the 

movement of organs and tissues in real-time, which helps with the diagnosis and treatment of a 

variety of medical problems. 

Sports Analysis: In order to help coaches and analysts make better decisions and boost team 

performance, real-time object tracking can be used in sports analysis to follow the movement of 

players, balls, and other objects in real-time. 

Virtual and Augmented Reality: In virtual and augmented reality applications, object tracking can 

be used to track the movement of real-world items and superimpose virtual elements on top of them 

to create more immersive experiences. 

 

2.7 REAL TIME OBJECT TRACKING WORKFLOW AND FEATURE 

EXTRACTION: 

The following workflow is often included in real-time object tracking: 

Object Detection: The first stage is to use an object detection method to find objects in the video 

stream. By detecting items in every frame of the movie, this method generates a bounding box 

around each object. 



 

                                                                        12 
 

Extraction of Features: The next stage is to extract features from the objects after they have been 

discovered. In order to do this, the pixels inside the bounding box must be examined and a number 

of features, including edge features, texture descriptors, and color histograms, must be computed. 

Object tracking: The video's future frames' objects are tracked using the extracted features. 

Different tracking algorithms, including Kalman filters, particle filters, or correlation filters, can 

be used for this. These algorithms estimate the object's motion and location in the following frame 

using the features. 

Re-detection: In some circumstances, the item may blur or leave the screen, making it challenging 

to track. The object detection technique may be employed once more in these circumstances to re-

detect the object in next frame 

Feedback and improvement: Based on system feedback, the tracking algorithm might be 

improved. For instance, the system may change the tracking algorithm parameters or re-detect the 

object if the object is not being tracked accurately. 

Overall, effective feature extraction and the application of quick and precise tracking algorithms 

are the keys to real-time object tracking. These are necessary for the system to maintain accurate 

object tracking over time while keeping up with the video stream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                        13 
 

CHAPTER 3 

             
                                    DEEP LEARNING 

 
3.1 INTRODUCTION: 

Deep learning, a branch of machine learning, use neural networks to discover intricate patterns and 

connections in data. Deep learning aims to make it possible for machines to learn from massive 

amounts of data and base predictions or judgements on those predictions. 

Artificial neural networks that mimic the functioning of human brains are frequently used to create 

deep learning models. These networks are made up of layers of interconnected nodes, often known 

as "neurons," which are used to process and change data. 

Large amounts of labelled data are fed into the neural network as part of the deep learning learning 

process, and the weights and biases of the neurons are changed to reduce the error between the 

expected output and the actual output. Backpropagation is the procedure that enables the network 

to steadily enhance its performance over time. 

State-of-the-art performance in a variety of tasks, including picture and audio recognition, natural 

language processing, and autonomous vehicles, has been attained using deep learning. Additionally, 

it has facilitated innovations in fields like robotics, computer vision, and drug development. 

The ability of deep learning to automatically learn complex features and representations from data, 

its scalability to big datasets and complicated models, and its generalizability to new and unexplored 

data are some of its main benefits. 

Deep neural networks can be difficult to train and optimise, and deep learning also needs a lot of 

data and computer power. Despite this, deep learning is a science that is always evolving and 

growing thanks to the constant development of new architectures, methods, and applications.. 

Convolutional Neural Networks (CNNs): A class of neural network that is frequently employed in 

the processing of images and videos. CNNs are frequently used for tasks like image classification, 

object identification, and image segmentation because they extract features from pictures using 

convolutional layers. 

Recurrent neural networks (RNNs) are a subclass of neural networks that are employed in tasks 

involving sequence modelling, including speech recognition, language translation, and natural 

language processing. RNNs can represent sequences of different lengths because they employ 

recurrent connections to convey information from one time step to the next. 



 

                                                                        14 
 

Generative Adversarial Networks (GANs): A class of neural network used for generative tasks 

like text production, music composition, and image and video synthesis. The generator and 

discriminator networks of GANs are trained jointly in a two-player game to generate realistic 

output. 

Transfer learning is a method that uses previously learned models as a jumping off point for new 

tasks. Transfer learning is advantageous when there is a lack of training data for a new task since 

it enables the model to apply information obtained from earlier tasks. 

Autoencoders: A class of neural network used for unsupervised learning tasks including 

dimensionality reduction and data compression. A decoder reconstructs the original input from the 

latent representation in an autoencoder, which consists of an encoder that compresses input data 

into a latent representation. 

A kind of machine learning called reinforcement learning is applied to decision-making tasks in 

dynamic situations. Applications like gaming, robotics, and autonomous driving use reinforcement 

learning algorithms, which gradually learn how to act in the environment to maximise a reward 

signal. 

A typical type of neural network utilized in image processing applications like image identification, 

object detection, and picture segmentation is the convolutional neural network. Convolutional layers 

are the foundation of CNNs, which use them to extract significant characteristics from input images. 

Each layer in a CNN is made up of a collection of teachable filters, often known as kernels or 

convolutional kernels. Each filter glides over the input image to execute a convolution operation 

and is small (3x3 or 5x5 pixels, for example). A feature map, which is the result of the convolution 

operation, highlights specific patterns or aspects of the input image that are crucial for the task at 

hand. 

In order to down sample the feature maps and condense their size, CNNs also employ other kinds 

of layers, such as pooling layers. Moreover, pooling layers can aid in strengthening the network's 

resistance to minute changes in the input image. 

Eventually, the final classification or regression operation is frequently carried out by fully 

connected layers, which are comparable to the layers in a conventional neural network. 

The ability of CNNs to automatically learn features from unprocessed input data eliminates the need 

for manual feature engineering, which is one of their key advantages. For applications like object 

recognition, where the patterns that characterize, an object can be exceedingly complicated and 

challenging to specify explicitly, this makes CNNs very successful. 



 

                                                                        15 
 

3.2 Feedforward and feedback networks: 

A feedforward network is a network with hidden layers, inputs, and outputs. Only one way can be 

travelled by the signals (forward). A layer that performs calculations receives input data. Based on 

the weighted sum of its inputs, each processing element performs computations. The updated values 

become updated input values for the subsequent layer (feed-forward). This keeps going over each 

layer, resulting in the output. For instance, feedforward networks are frequently employed in data 

mining. 

A feedback network has feedback channels, such as a recurrent neural network. This implies that 

they can use loops to have signals moving in both directions. Neuronal connections can be made in 

any way. Since this kind of network contains loops, it transforms into a non-linear dynamic system 

that evolves continually until it achieves an equilibrium state. For solving optimization problems, 

feedback networks are frequently utilized to find the optimal configuration of related components. 

 

3.3 Weighted Sum: 

Features from a training set or the outputs of neurons in a lower layer can both be inputs to a neuron. 

Each synapse at each point of connection between two neurons has a different weight. You must go 

along the synapse and pay the "toll" if you want to move from one neuron to the next (weight). The 

neuron then adds up the weighted inputs from all the incoming synapses and applies an activation 

function. 

All of the neurons in the following layer receive the result from it. We refer to changing the weights 

on these synapses when we discuss updating weights in a network. The weighted outputs of all the 

neurons in the layer before are added to form a neuron's input. The weight of the synapse that 

connects each input to the present neuron is multiplied by each input. Each neuron in the current 

layer will have 3 different weights, one for each synapse, if the preceding layer had 3 inputs or 

neurons. 

In a nutshell, a node's output is determined by its activation function. 

The transfer function or activation function converts input signals into output signals. The output 

values are mapped onto a range, such as 0 to 1 or -1 to 1. The pace at which the cell's action potentials 

fire is represented by an abstraction. It is a numerical indicator of how likely it is that the cell may 

ignite. The function is binary at its most basic level: either yes (the neuron fires) or no (the neuron 

doesn't fire). The output can be anywhere in a range or can be either 0 or 1 (on/off or yes/no). An 

output of 0.9, for instance, would indicate a 90% chance that your image is, in fact, a cat if you were 

using a function that maps a range between 0 and 1 to assess the likelihood that an image is a cat. 

 



 

                                                                        16 
 

3.4 Activation function: 

The transfer function or activation function converts input signals into output signals. The output 

values are mapped onto a range, such as 0 to 1 or -1 to 1. The pace at which the cell's action potentials 

fire is represented by an abstraction. It is a number that indicates how likely it is that the cell will 

set off. The function is binary at its most basic level: either yes (the neuron fires) or no (the neuron 

doesn't fire). The output can be anywhere in a range or can be either 0 or 1 (on/off or yes/no). 

What are our options? There are other activation mechanisms, but these four are the most prevalent 

ones. 

 

3.4.1 Threshold function 

This function takes steps. The function returns 0 if the total of the input values falls below a 

predetermined threshold. If it is more than zero or equal to zero, it will pass on 1. It is a very strict, 

simple, yes-or-no function. 

 

3.4.2 Sigmoid function  

Logistic regression employs this function. It progresses from 0 to 1 smoothly and gradually, in 

contrast to the threshold function. On the output layer, it is helpful and frequently utilised for linear 

regression. 

 

3.4.3 Hyperbolic Tangent Function 

The sigmoid function and this function are extremely similar. Nevertheless, in contrast to the 

sigmoid function, which ranges from 0 to 1, the value ranges from -1 to 1. Although this does not 

closely resemble what occurs in the brain, this function produces better results when neural networks 

are being trained. Sometimes, while being trained with the sigmoid function, neural networks 

become "stuck." This occurs when there is an abundance of extremely negative input that keeps the 

output close to zero and interferes with learning. 

 

3.4.4 Rectifier function 

In the world of neural networks, this activation function may be the most common. It is the most 

effective and makes biological sense. It has a kink, but following the kink at 0, it is smooth and 

progressive. For instance, your output would be "no" or a percentage of "yes" if this were the case. 

There is no need for normalization or other intricate calculations with this function. 

When machines can carry out tasks that would normally require intellect from a human, artificial 

intelligence becomes crucial. It falls under the category of machine learning, where computers may 



 

                                                                        17 
 

pick up knowledge and gain insight through experience without the aid of humans. Artificial neural 

networks, algorithms modelled after the human brain, learn from a lot of data in deep learning, a 

subset of machine learning. The idea behind deep learning is based on human experience; a deep 

learning algorithm would repeatedly do a task in order to improve the result. Learning is made 

possible by the numerous (deep) layers of neural networks. Deep learning can be trained to solve 

any problem that requires "thinking" to solve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      



 

                                                                        18 
 

                          CHAPTER  4 

 
                     YOU ONLY LOOK ONCE    

                                         (YOLO) 

 

 
4.1 INTRODUCUTION: 

 

YOLO (You Only Look Once) is a real-time object detection system developed by Joseph Redmon 

and his colleagues at the University of Washington. The YOLO algorithm is made to identify objects 

quickly and precisely in still and moving picture frames. 

YOLO breaks an image into a grid of cells and forecasts bounding boxes and object class 

probabilities for each cell, in contrast to typical object detection algorithms that use region-based 

approaches like R-CNN. Using only one forward trip across the network, compared to previous 

techniques, this method allows YOLO to detect objects. 

The YOLO algorithm is built using a deep convolutional neural network (CNN) architecture, which 

employs many layers to extract characteristics from the input image. Bounding boxes and item class 

probabilities are predicted for each cell in the picture grid by the network's final layer. 

YOLO's quickness is one of its main benefits. Real-time image processing capabilities of the 

algorithm make it ideal for use in robotics, surveillance, and autonomous vehicles. Also, YOLO has 

a reputation for accuracy, consistently producing cutting-edge outcomes on a variety of benchmark 

datasets. The YOLO technique is simple for developers to utilize and modify for their applications 

because it has been included into several well-known deep learning frameworks, such as 

TensorFlow, PyTorch, and Darknet. The algorithm's most recent iteration, YOLOv5, has increased 

speed and accuracy even further, making it a popular option for real-time object recognition jobs. 



 

                                                                        19 
 

              

                                    

                                                     Fig 4.1 YOLO timeline  

 

4.2 YOLO VERSIONS: 

The YOLO method has been created in a number of iterations over the years, each with 

enhancements to accuracy, speed, and other elements. Here is a quick rundown of some of the most 

famous YOLO variations: 

1. YOLOv1: The original version of YOLO was introduced in 2015 and used a single neural 

network to predict object classes and bounding boxes. While it was fast, it struggled with small 

objects and had lower accuracy compared to later versions. 

2. YOLOv2: Released in 2017, YOLOv2 addressed some of the limitations of the original 

algorithm by incorporating features like batch normalization, anchor boxes, and multiscale 

prediction. These changes improved accuracy and made the algorithm more robust to different 

object sizes. 

3. YOLOv3: YOLOv3 was introduced in 2018 and further improved accuracy by using a larger 

backbone network, a feature pyramid network, and a better loss function. It also introduced new 

features like dynamic anchor boxes, which adapt to the shape of the object being detected, and 

multi-label classification. 

4. YOLOv4: Released in 2020, YOLOv4 was a major update to the algorithm, introducing several 

new features like CSPNet, Spatial Pyramid Pooling (SPP), and Mish activation function. These 

changes improved accuracy, speed, and memory efficiency, making YOLOv4 one of the best-

performing object detection algorithms. 



 

                                                                        20 
 

5. YOLOv5: YOLOv5 was introduced in 2020 as a lightweight version of the algorithm, designed 

for faster and more efficient object detection. It uses a simpler architecture and introduces 

techniques like anchor-free object detection and focal loss. YOLOv5 achieved state-of-the-art 

accuracy on several benchmark datasets while being significantly faster than previous versions. 

 

4.2.1 YOLO version1: 

YOLOv1 is the first version of the YOLO object detection algorithm, introduced in 2015 by Joseph 

Redmon and his team at the University of Washington. YOLOv1 was a groundbreaking algorithm 

that introduced a new approach to object detection, allowing for real-time detection and 

classification of objects in images and videos. 

Using a single neural network, the YOLOv1 model predicts item classes and bounding boxes in an 

image. Each cell in the input image's grid-like split is responsible for recognizing objects that are 

included within it. The system then forecasts bounding boxes and object class probabilities for each 

cell in the grid, allowing for the identification of several things during a single run through the 

network. 

The quickness of YOLOv1 is one of its main benefits. The algorithm's ability to interpret photos in 

real-time makes it ideal for use in robots and surveillance systems. In contrast to subsequent 

versions, YOLOv1 exhibited poorer accuracy and had trouble detecting tiny objects. 

24 convolutional layers and 2 fully linked layers made up the deep convolutional neural network 

(CNN) architecture employed by YOLOv1. The PASCAL VOC dataset, which includes pictures 

from 20 different item categories, was used to train the network. On this dataset, the algorithm 

produced state-of-the-art results and had an average accuracy of 63.4% while detecting objects in 

real time. 

Although YOLOv1 has since been outperformed by more recent iterations of the algorithm, it 

represented a significant advance in the field of object recognition and opened the door for future 

quicker and more precise systems. 

 

4.2.2 YOLO version2: 

The second iteration of the YOLO object identification system, dubbed YOLOv2 (You Only Look 

Once version 2), was unveiled in 2017 by Joseph Redmon and his colleagues at the University of 

Washington. The second version of the algorithm, known as YOLOv2, fixed some of the issues of 

the first version. 

The inclusion of anchor boxes, which allowed the algorithm to more correctly recognise objects of 

various sizes and aspect ratios, was one of the major advancements in YOLOv2. The method 



 

                                                                        21 
 

employs anchor boxes, which are pre-defined boxes of various sizes and shapes, to forecast the 

positions and sizes of objects. This strategy enables the program to more precisely locate items of 

various sizes. 

Additionally, batch normalization was included in YOLOv2, which increased the network's 

performance and stability. The system also employed a multi-scale strategy to identify items of 

various sizes, which improved its ability to handle tiny things. 

The deep convolutional neural network (CNN) architecture employed by the YOLOv2 algorithm 

included 53 convolutional layers and 4 max-pooling layers. On the COCO dataset, which includes 

pictures from 80 different item categories, the network was trained. On this dataset, the algorithm 

produced cutting-edge findings and had a real-time item detection accuracy of 78.6% on average. 

Overall, YOLOv2 was a significant advancement over YOLOv1, achieving more accuracy while 

still delivering real-time performance. The technique was a popular choice for real-time object 

identification jobs since it considerably increased accuracy and stability through the use of anchor 

boxes and batch normalization. 

 

4.2.3 YOLO v3: 

The third iteration of the YOLO object identification algorithm, dubbed YOLOv3 was released in 

2018 by Joseph Redmon and his colleagues at the University of Washington. The accuracy and 

speed of the algorithm are further improved by YOLOv3, which draws on the advancements made 

by YOLOv2. 

The inclusion of a feature pyramid network (FPN), which enables the algorithm to recognise objects 

at various sizes, was one of the main advancements in YOLOv3. In order to identify objects of 

various sizes, the FPN is utilised to extract information from the neural network's various layers. 

YOLOv3 also introduced a new detection head that predicts object categories and bounding boxes 

at three different scales, allowing the algorithm to detect objects of different sizes more accurately. 

In addition, the algorithm used a technique called "swish" activation, which improved the accuracy 

of the network. 

A deep convolutional neural network (CNN) architecture of 106 convolutional layers was utilised 

by the YOLOv3 algorithm. The COCO dataset, which includes photos from 80 different item 

categories, was used to train the network. On this dataset, the algorithm produced state-of-the-art 

results and had an average accuracy of 81.4% while detecting objects in real time. 

Overall, YOLOv3 is a big step forward over YOLOv2, and it increased accuracy while still 

preserving real-time performance. The algorithm's accuracy and stability were greatly enhanced 



 

                                                                        22 
 

with the addition of the new detection head and feature pyramid network, making it a popular option 

for real-time object identification jobs. 

 

4.2.4 YOLO v4: 

The YOLO object identification algorithm's fourth and most recent iteration, dubbed YOLOv4, was 

unveiled in 2020 by Alexey Bochkovskiy and his colleagues at the AI research firm Ultralytics. 

YOLOv4 outperformed YOLOv3 in benchmarks for object identification, achieving cutting-edge 

performance. 

The implementation of a more potent backbone network, known as CSPDarknet53, which increased 

the accuracy and speed of the algorithm, was one of the main advancements in YOLOv4. 

Additionally, YOLOv4 added a number of new methods, including as cut mix regularization, self-

adversarial training, and mosaic data augmentation, which increased the algorithm's accuracy and 

resilience. 

In order to increase the accuracy of object recognition, YOLOv4 also created a new architecture 

known as the "YOLOv4 neck" that mixes features from many network levels. To extract 

characteristics from various sizes, the architecture combines spatial pyramid pooling (SPP) and 

route aggregation network (PAN) components. 

On the COCO dataset, the YOLOv4 algorithm produced cutting-edge results, with an average 

accuracy of 43.5% on the test-dev dataset. On a Tesla V100 GPU, the algorithm was also able to 

recognise objects in real-time at an average frame rate of 65 FPS. 

Overall, YOLOv4 outperformed YOLOv3 and produced cutting-edge outcomes in object detection 

benchmarks. The algorithm's accuracy and speed were greatly enhanced by the adoption of a more 

potent backbone network, fresh data augmentation methods, and the YOLOv4 neck design, making 

it a popular option for real-time object recognition jobs. 

 

4.2.5 YOLO v5: 

A deep learning-based object identification method called YOLOv5 was created by Ultralytics and 

made public in 2020. YOLOv5 is a novel approach to object identification that makes use of a 

distinct architecture and training procedure rather than an official upgrade to the YOLOv4 

algorithm. 

YOLOv5 has a distinct architecture known as a "backbone" network that is based on a well-liked 

object detection model called EfficientDet, in contrast to earlier versions of YOLO. The detection 

head uses the information that the backbone network extracts from the input picture to make 

predictions about the position and kind of objects in the image. 



 

                                                                        23 
 

YOLOv5 is trained using a new training method called "Scaled-YOLOv4", which involves scaling 

the input images during training to improve the accuracy of the model. This training method allows 

YOLOv5 to achieve state-of-the-art accuracy on object detection benchmarks while maintaining 

real-time performance. 

One of YOLOv5's important characteristics is its capacity for "anchor-free" recognition, which 

enables it to recognise objects with various sizes and aspect ratios. Anchor boxes, which were 

required in earlier iterations of YOLO to identify objects of various sizes and shapes, are no longer 

necessary thanks to this method. 

On the COCO dataset, the YOLOv5 algorithm produced cutting-edge results, with an average 

accuracy of 50.0% on the test-dev dataset. On a Tesla V100 GPU, the algorithm was also able to 

recognise objects in real-time at an average frame rate of 200 FPS. 

In comparison to earlier iterations of YOLO, version 5 represents a novel approach to object 

identification that makes use of a distinct architecture and training methodology.  

The inference hardware, the size of the input image, and the difficulty of the detection job are some 

of the variables that affect the speed and accuracy of YOLOv5. In general, YOLOv5 is a very 

accurate object identification method that is quite quick. 

Depending on the size of the input image and the difficulty of the detection job, the Ultralytics team 

claims that YOLOv5 can accomplish real-time object recognition at up to 140 frames per second 

(FPS) on a Tesla V100 GPU. YOLOv5 is now one of the quickest object identification algorithms 

on the market as a result. 

On the COCO dataset, YOLOv5 produced findings that were state-of-the-art in terms of accuracy, 

with an average precision of 50.0% on the test-dev dataset. This is a substantial improvement above 

the accuracy attained by earlier iterations of YOLO. 

It's important to note that YOLOv5's accuracy may be increased any further by employing transfer 

learning or fine-tuning the algorithm on certain datasets. Additionally, by tuning the algorithm's 

hyperparameters and employing more potent hardware for inference, YOLOv5's speed and accuracy 

may be increased. 

 

4.3 YOLO V4 ARCHITECTURE: 

YOLO v4 is an object detection algorithm that is known for its high speed and accuracy. Here are 

the key features and architecture of YOLO v4: 

1. Backbone network: YOLO v4 uses a CSPDarknet53 architecture as the backbone network, which 

is a latest version of the Darknet53 architecture used in YOLO v3. The CSPDarknet53 



 

                                                                        24 
 

architecture includes cross-stage partial connections between layers, which helps to improve the 

flow of information through the network. 

2. SPP and SAM modules: The neck network of YOLO v4 includes SPP (Spatial Pyramid Pooling) 

and SAM (Spatial Attention Module) modules, which help to improve the receptive field and 

localization of small objects. The SPP module performs spatial pyramid pooling on the feature 

maps to capture objects at different scales, while the SAM module applies attention mechanisms 

to focus on relevant regions of the feature maps. 

3. Prediction head: Prediction head of YOLO v4 is a series of CNN layers followed by a global 

average pooling layer and several fully connected layers. It predicts the bounding boxes, object 

scores, and class probabilities for objects in the image. 

4. Training pipeline: YOLO v4 uses a custom training pipeline that includes several advanced 

techniques, such as random training shapes, mosaic data augmentation, and self-adversarial 

training. These techniques help the model become more accurate and robust. 

5. Model optimization: YOLO v4 includes several model optimization techniques, such as dynamic 

convolution, Mish activation, and Drop Block regularization. These techniques help to make the 

model more accurate while shrinking its size. 

6. Multi-scale training and testing: YOLO v4 supports multi-scale training and testing, which 

enables the model to detect objects at different scales and resolutions. 

Overall, YOLO v4 is a highly optimized and efficient object detection algorithm that achieves state-

of-the-art performance on several benchmarks. Its advanced architecture and training pipeline make 

it a popular choice for a wide range of applications, including autonomous driving, robotics, and 

surveillance. 



 

                                                                        25 
 

 

                        

                                                  Fig 4.3 YOLO V4 architecture  

 

4.3.1 Predict Objects Using YOLO v4: 

 In order to identify groups of items in a picture, YOLO v4 employs anchor boxes. See anchor 

box for object detection for more information on anchor boxes. YOLO v4 forecasts these three 

characteristics for each anchor box, just like v3 did: 

• Predicts the object of each anchor box using intersection over union (IoU). 

In tasks involving object recognition and picture segmentation, intersection over union is a 

common assessment metric. For a specific item in an image, the overlap between the predicted 

bounding box (also known as the segmentation mask) and the ground truth bounding box (also 

known as the segmentation mask) is measured using the IoU method. 

The area of intersection between the predicted bounding box and the ground truth bounding 

box is compared to the area of union between the two bounding boxes to produce the IoU 

metric.         



 

                                                                        26 
 

           

   

                                                     

                                                 Fig 4.3.1 IoU 

 

The IoU value ranges from 0 to 1, with 0 signifying a complete match between the expected and 

ground truth bounding boxes and 1 signifying a complete lack of overlap. A greater IoU value 

denotes better segmentation or detection precision. 

The performance of object identification and segmentation algorithms is frequently assessed using 

IoU as a measure during training and testing. Models with greater IoU values are chosen over those 

with lower IoU values because they are thought to be more accurate. IoU is also employed as a 

threshold for removing erroneous segmentations or detections. For instance, for a model to be 

regarded a legitimate detection or segmentation, it may need to have an IoU higher than a 

predetermined threshold (for instance, 0.5). 

 

 

 Anchor box offsets — Refines the anchor box position. 

In object identification algorithms like YOLO (You Only Look Once) and Faster R-CNN (Region-

based Convolutional Neural Network), anchor boxes play a crucial role. A predetermined box form 

and size called an anchor box is used to indicate potential placements for items in a picture. 

The objective of object detection is to identify and categorize items in a picture, and in order to 

achieve this precisely, the algorithm must forecast where the objects will be in the image. The 

algorithm splits the picture into a grid of cells in order to do this, and then it assigns a set of anchor 

boxes of various sizes and aspect ratios to each cell in the grid. For example, an anchor box might 



 

                                                                        27 
 

be rectangular with dimensions of 32x32 pixels, 64x64 pixels, or 128x128 pixels, and with aspect 

ratios of 1:1, 1:2, or 2:1. 

 

 

                                

        Fig 4.3.2 Anchor boxes  

In order to fit the size and form of the objects in the image, the algorithm modifies the parameters 

of the anchor boxes during training. The likelihood of an object appearing in each cell and the 

coordinates of the bounding box that best matches the object are then predicted by the method. 

Anchor box usage increases the accuracy of the detection results and helps the algorithm handle 

objects of various sizes and forms. Additionally, anchor boxes lessen the amount of potential 

bounding boxes that the algorithm must consider, which aids in hastening the detection process. 

 27Class probability — Predicts the class label assigned to each anchor box. 

Class probability in object detection is the likelihood or confidence level that an object in a picture 

belongs to a specific class. Cars, people, bicycles, and traffic lights are just a few examples of the 

types of things that are commonly categorized by object identification algorithms into a preset set 

of classes. 

The system gains the ability to give each class for each observed item a likelihood score during 

training. For instance, if the algorithm identifies a vehicle in an image, it may give the "car" class a 

probability score of 0.8 while giving lower probabilities to other classes. 

During testing or inference, the algorithm uses the class probability scores to determine the most 

likely class for each detected object. The algorithm may use a threshold value to filter out detections 

with low probability scores, as these are more likely to be false positives. 

 



 

                                                                        28 
 

                                      

 

 

                                   Fig 4.3.3 Class probability mapping  

 

Class probability scores are an important output of object detection algorithms because they provide 

information about the confidence level of the algorithm's predictions. Higher probability scores 

indicate greater confidence in the detection result, while lower probability scores indicate a higher 

likelihood of error. Object detection systems often use class probability scores to evaluate and 

compare the performance of different algorithms or models. 

 

4.4 METHODOLOGY: 

Object detection and tracking using YOLOv4 involves using the YOLOv4 model to detect objects 

within an image or video, and then using an algorithm to track those objects over time. Here are the 

basic steps involved. In Object detection, the YOLOv4 model is used to detect objects within each 

frame of the input video or image sequence. This involves passing each frame through the model 

and using the output to draw bounding boxes around each detected object. In Object tracking: Once 

the objects have been detected in the first frame, an object tracking algorithm can be used to track 

them over time. One popular algorithm for object tracking is the Kalman filter, which uses a set of 

equations to estimate the position and velocity of each object over time. Data association: As new 

frames are processed, the objects may move, change shape, or become partially occluded.  

To maintain accurate tracking, the algorithm needs to associate each new detection with the correct 

object from the previous frame. This can be done using various techniques, such as matching the 

location and size of the bounding boxes or using appearance-based features. 

 



 

                                                                        29 
 

Input: To use YOLOv4 for object detection, you would typically need an image or video dataset as 

input. The input dataset should consist of images or videos that you want to analyze for objects of 

interest. The images or videos should be in a compatible format, such as JPEG or MP4. 

Feature extraction: Feature extraction in YOLOv4 involves extracting features from the 

intermediate layers of the neural network, rather than using the network for object detection. 

Learning feature vectors: YOLOv4 can be used for learning feature vectors through a process 

called transfer learning. Transfer learning is a technique where a pre-trained neural network, such 

as YOLOv4, is used as a starting point for a new task, and then fine-tuned on a new dataset. 

 

 

                                       

                     Fig 4.5 Block diagram for object tracking  

 

Feature matching: Once you have extracted feature vectors from your input images using 

YOLOv4, you can then compare these feature vectors to a reference set of feature vectors to find 

matches. 

Position estimation: The x and y coordinates of the box's top-left corner, combined with its width 

and height, are commonly used to describe the bounding box's coordinates. The centre of the 

bounding box and its separation from other objects or interesting areas of the picture or video may 

both be determined using these parameters. 

Tracking results: The tracking algorithm typically uses the bounding boxes of the detected objects 

to predict their position in the next frame, and then compares these predictions to the actual positions 

of the objects in the next frame to update their position estimates. The algorithm can also use 



 

                                                                        30 
 

additional information such as object velocities or previous motion trajectories to improve the 

accuracy of the position estimates. 

 

4.5 CONVOLUTION NEURAL NETWORK: 

In applications for image identification and classification, the term "CNN" refers to a class of neural 

networks. CNNs are designed to process and analyze pictures in a way that is similar to how 

individuals perceive visual information, and they are based on the structure and function of the 

visual cortex in animals. 

The fundamental components of a CNN are convolutional layers, pooling layers, and fully 

connected layers. A convolutional layer employs a series of learnable filters (also known as kernels 

or weights) to search the input picture for certain traits or patterns. The result of the convolutional 

layer is a collection of feature maps that emphasize the presence of specific qualities in the input 

picture. The pooling layer, which down samples the feature maps and lowers the dimensionality of 

the data, increases the network's computational efficiency. A prediction is made using the learned 

features by the fully connected layers, which are typical neural network layers that take the output 

of the convolutional and pooling layers. They are used for tasks involving classification or 

regression. 

CNNs provide several advantages over other machine learning techniques for categorising images. 

They may immediately learn features from the picture data without the need for human feature 

engineering. Additionally, they can capture spatial connections between features, which is essential 

for jobs involving picture identification. Finally, because they can support different picture sizes 

and orientations, they are more resistant to changes in the input data.\ 

CNNs have been used in several applications, including object detection, facial recognition, and 

natural language processing. Since they have gained state-of-the-art performance in several 

benchmarks for image identification, they continue to be a popular focus of research in computer 

vision and machine learning. 

 



 

                                                                        31 
 

       

                                             

 

                                                        Fig 4.5    CNN 

 

4.5.1 How do CNN work? 

Artificial neural networks often employed in computer vision and image recognition applications 

are convolutional neural networks, also referred to as CNNs. The core of a CNN is composed of 

convolutional layers, pooling layers, and fully linked layers. Here is how they work: 

1. Convolutional layers: A convolutional layer convolves a series of filters over an input picture to 

create a feature map. The dot product between the filter weights and the picture's pixel values is 

calculated for each point by each filter, which is a collection of weights that glides across the image. 

The resultant feature map has only one value. 

2. Pooling layers: To minimize the spatial dimensions of the feature maps, a pooling layer is 

frequently added after each convolutional layer. The most used pooling method is max pooling, 

which outputs the highest value from a small area of the feature map to the following layer. 

3. Fully connected layers: The output is flattened into a one-dimensional vector and fed into a fully 

connected layer after multiple convolutional and pooling layers. Each neuron in this layer is linked 

to every neuron in the layer above, similar to a standard neural network layer. The prediction about 

the input picture is then based on the output of the fully connected layer. 

 

CNNs use backpropagation to optimize the weights in the filters and fully connected layers during 

training. By adjusting these weights, the network learns to recognize patterns and features in images, 

allowing it to make accurate predictions on new, unseen images. 

 

 



 

                                                                        32 
 

4.6 CNN LAYERS: 

4.6.1 Convolutional layer: 

In this layer, all major computation takes place. This layer requires three things: input data, a filter, 

and a feature map. A kernel or feature detector are common names for the filter. This filter checks 

the image's receptive fields to see if a specific feature is present or not. Convolution is the name 

given to this technique. 

Let's suppose for the time being that the input is a 3D pixel matrix representing a colour image. This 

implies that the height, width, and breadth will all have RGB values. A 2D array of weights 

representing a portion of the image makes up the feature detector. The size of the receptive field is 

determined by the filter, which is commonly a 3x3 matrix. 

After the filter has been applied to a portion of the image, the dot product between the input pixels 

and the filter is calculated. The output array is then given this dot product. The filter travels in small, 

repeated stages until it has completely engulfed the input picture. Feature maps, activation maps, or 

convolved features are the outcome of a series of dot products made from the input and the filter. 

A convolutional layer applies a series of filters to an input picture in order to create a feature map. 

 

                                

                                       

 

                                            Fig 4.6.1 Convolution layers 

 

In their role as feature extractors, the convolutional layers learn the feature representations of the 

input pictures. Convolutional layers' neurons are arranged into feature maps. A collection of 

trainable weights, often referred to as a filter bank, connects each neuron in a feature map's receptive 

field to a group of nearby neurons in the layer above. A fresh feature map is produced by convolving 

inputs with learnt weights, and the outputs are then sent through a nonlinear activation function. 



 

                                                                        33 
 

All neurons inside a feature map have weights that are confined to being equal, even though different 

feature maps within the same convolutional layer have varied weights so that several features can 

be retrieved at each location. 

As its name implies, the convolutional layer is essential to how CNNs operate. The primary focus 

of the layers parameters is the use of learnable kernels. 

These kernels entirely fill the depth of the input, although typically having a limited spatial 

dimension. Each filter is convolved across the spatial dimensions of the input as soon as the data 

reaches the convolutional layer, producing a 2D activation map. These activation maps are visibly 

discernible. 

The scalar product is calculated for each value in that kernel as we travel through the input. The 

network kernels will consequently develop the ability to "fire" when they identify a certain feature 

in a specific spatial place in the input. These are frequently referred to as activations. 

The core element of the kernel is covered by the input vector, which is then calculated and replaced 

with a weighted sum of any surrounding pixels and of the input vector itself. 

The whole output volume of the convolutional layer will be created by stacking the activation maps 

that are associated with each kernel along the depth dimension. 

As we alluded to before, training ANNs with inputs like images results in models that are too big to 

learn effectively. This is due to the entirely coupled structure of traditional ANN neurons, hence 

each neuron in a convolutional layer only connects to a small piece of the input volume to prevent 

this. The dimensionality of the region is referred to as the size of the neuron's receptive field. The 

magnitude of the connectivity through the depth is almost always equal to the depth of the input. 

Each neuron in the convolutional layer would have a total of 108 weights when the receptive field 

size is set to 6 6 and the input to the network is an RGB-colored image with 64 64 dimensions, for 

example. (6 6 3), where 3 denotes the degree of connectivity inside the depth of the volume. 

Consider that a typical neuron seen in other forms of ANN might have 12, 288 weights to put this 

into context. 

One can regulate the depth of the output volume that the layers produce by manually altering the 

number of neurons in each convolutional layer to the same region of the input. Many ANN models 

show this to be the case, with every neuron in the hidden layer being directly connected to every 

other neuron in the preceding layer. While reducing this hyperparameter can greatly reduce the 

network's total number of neurons, it can also significantly reduce the model's ability to recognise 

patterns. 

We can also provide the stride in which we establish the depth around the spatial dimensions of the 

input in order to place the receptive field. For example, if we set the stride to 1, the resulting 



 

                                                                        34 
 

receptive field would be densely overlapping and would result in extremely large activations. The 

quantity of overlapping will be reduced and the outcome will have lower spatial dimensions as a 

result of lengthening the stride. 

The simple process of zero-padding entails padding the input's boundary. More control over the 

dimensionality of the output volumes is effectively provided. 

It's important to understand that by using these techniques, we will alter the spatial dimensionality 

of the convolutional layers' output. 

If we use an image input with any real dimensionality, despite all of our existing efforts, we will 

still find that our models are enormous. Nonetheless, methods have been developed to dramatically 

cut down on the convolutional layer's overall parameter count. 

If an area feature can be calculated at one particular spatial location, it is probably helpful in another, 

according to the principle of parameter sharing. If each individual activation map is restricted to 

have the same weights and bias, the total number of parameters in the output volume will be 

significantly decreased. 

As a result, as the backpropagation stage advances, each neuron in the output will represent the 

overall gradient of which may be added throughout the depth, only updating one set of weights as 

opposed to all of them. 

 

4.6.2 Pooling layer: 

This layer, sometimes referred to as down sampling, performs dimensionality reduction, lowering 

the number of input parameters. It is necessary to reduce the amount of computing power needed to 

process the data. Also, it supports the process of efficiently training the model by extracting 

prominent features. 

Similar to the convolutional layer, it applies the filter to all of the input data, but this filter doesn't 

have weights. Instead, the kernel fills the output array with values from the receptive field using 

aggregation functions. 

Pooling comes in two varieties: 

a. Max Pooling: This filter returns the highest value from the area of the image that is covered by 

the kernel. 

b. Average Pooling: The filter outputs the mean of all values from the kernel-covered area of the 

picture. 

 

 



 

                                                                        35 
 

                                   

                                                 Fig 4.6.2 Pooling layer  

 

The features present in an input image are summarized by the convolution layer of a convolutional 

neural network. 

The disadvantage of the method is that the output feature maps are sensitive to the placement of the 

features in the input. One way to address this sensitivity is to downscale the feature maps. The result 

is that the down sampled feature maps, also known as "local translation invariance" in technical 

terms, are more resistant to changes in the position of the feature in the image. 

Pooling layers provide a mechanism for down sampling feature maps by summarizing the existence 

of features in specific feature map patches. Two common pooling methods that, respectively, 

summarize a feature's average presence and its most active presence are average pooling and 

maximum pooling. 

In this course, you will study how the pooling operation works and how to apply it to convolutional 

neural networks. 

After finishing this tutorial, you will be aware of the following: • Down sampling feature detection 

in feature maps requires pooling. 

• How to calculate and put average and maximum pooling in a convolutional neural network into 

practice. 

• Convolutional neural network global pooling techniques. 

 

4.6.3 Fully connected layers: 

The output layer and the pixel values of the input image are not directly coupled in partially 

connected layers. Yet, each node in the output layer of this layer is straight-lined to a node in the 



 

                                                                        36 
 

layer beneath. This layer performs the classification process using features that were gathered from 

earlier layers and various filters. 

ReLu functions are typically used in convolutional layers and pooling layers, whereas SoftMax 

activation functions are typically used in this layer to accurately classify inputs. The chance that this 

function returns can be between 0 and 1. 

 

                                                         

 

 

                       Fig 4.6.3 Fully connected layers  

 

    

A convolutional neural network's convolutional layers methodically apply previously learned filters 

to input images to create feature maps that list the features present in the input. 

Convolutional layers exhibit good performance, and stacking convolutional layers in deep models 

permits learning of high-order or more abstract features by layers deeper in the model while learning 

of low-level features by layers closer to the input, such as lines. 

One of the drawbacks of convolutional layer feature maps is that the precise position of the input 

characteristics is preserved. This suggests that even little adjustments to the feature's position in the 

input picture will result in a distinct feature map. This might be caused by re-cropping, rotation, 

shifting, and other small changes to the provided picture. 

In signal processing, down sampling is a widely used technique to address this problem. In this 

situation, the input signal is converted into a lower resolution version while keeping the essential 

structural elements and excluding any unnecessary fine information. 



 

                                                                        37 
 

Convolutional layers can be used to do down sampling by adjusting their across-image stride. Using 

a pooling layer is a more dependable and common method. 

A new layer known as a pooling layer is added after the convolutional layer. For instance, when a 

nonlinearity (like ReLU) has been applied to the feature maps generated by a convolutional layer, 

the layers of a model may seem like follows: 

1. Input Image 

2. Convolutional Layer 

3. Nonlinearity 

4. Pooling Layer 

The insertion of a pooling layer following the convolutional layer is a typical layer ordering pattern 

in a convolutional neural network that may be repeated once or more times in each model. 

The pooling layer performs individual processing on each feature map, creating a new set of the 

same number of pooled feature maps. 

Pooling is carried out in order to apply a pooling operation—similar to a filter—on feature maps. 

The pooling operation's or filter's size, which is generally 22 pixels applied with a stride of 2 pixels, 

is lower than the feature map's size. 

Because each dimension is divided in half, each feature map will always be compressed by a factor 

of 2, making each feature map just half as big in terms of pixels or values. For instance, adding a 

pooling layer to a feature map of 66 (36 pixels) will result in an output pooled feature map of 33. (9 

pixels). 

The pooling operation is specified rather than instructed. There are two often used functions in the 

pooling operation: 

Average Pooling: Calculate the average value for each patch on the feature map. 

Maximum Pooling (or Max Pooling): Calculate the maximum value for each patch of the feature 

map. 

A condensed version of the input features is produced by employing a pooling layer and down 

sampling or pooling feature maps. They are helpful because a pooled feature map with a feature in 

the same place is produced when a feature's location in the input, as identified by the convolutional 

layer, changes little. The ability that pooling adds is referred to as the model's invariance to local 

translation. 

 

4.7 Artificial Neural Networks: 

A computational model called an artificial neural network (ANN) is modelled after the form and 

operation of biological neural networks in the human brain. It is made up of numerous 



 

                                                                        38 
 

interconnected nodes, or neurons, arranged in layers. Up until a final output is produced, each 

neuron receives inputs, processes them, and transmits the results to the layer of neurons below it. 

Applications for machine learning and artificial intelligence, such as speech and image recognition, 

natural language processing, and predictive analytics, frequently use ANNs. A collection of input-

output pairs is used to train the network, which then learns to identify patterns and relationships in 

the data and provide predictions using that knowledge. 

ANNs come in a variety of forms, including as convolutional, recurrent, and feedforward networks. 

The simplest sort of network is a feed-forward network, which has an input layer, one or more 

hidden layers, and an output layer. Recurrent networks are made to handle data sequences, such as 

text or time series data. Convolutional networks, which can automatically train to recognise features 

in images, are frequently employed for image identification applications. 

Prior to their development, artificial neural networks (ANNs) were believed to be unable to address 

complicated issues. But, in order to train efficiently, they need a lot of data and computer power, 

and it can be challenging to understand and explain how they make decisions. 

                

                          

                                               

                                     Fig   4.7   Neural network 

  

The human brain is made up of 86 billion neurons, or nerve cells. They are connected to a million 

more cells through axons. Dendrites take in information from sensory organs as well as external 

inputs. These inputs generate electric impulses, which swiftly move across the brain network. A 

neuron has the choice to either cease processing the message or pass it through to another neuron 

for processing. 

ANNs, which resemble the organic neurons present in the human brain, are made up of several 

nodes. The neurons are connected by links, and they communicate with one another. The nodes 



 

                                                                        39 
 

have the capacity to accept input data and process it using simple operations. The results of these 

activities are received by other neurons. 

 

4.7.1 Neural network: 

A computational model known as a "neural network" is modelled after the form and operation of 

biological neural networks seen in the human brain. It is made up of numerous interconnected nodes, 

or neurons, arranged in layers. Up until a final output is produced, each neuron receives inputs, 

processes them, and transmits the results to the layer of neurons below it. 

 Artificial intelligence and machine learning applications, such as speech and image identification, 

natural language processing, and predictive analytics, frequently use neural networks. A collection 

of input-output pairs is used to train the network, which then learns to identify patterns and 

relationships in the data and provide predictions using that knowledge. 

                                                  

                                              Fig 4.7.1   A simple neural network 

 

Neural networks come in a variety of shapes, such as feedforward, recurrent, and convolutional 

networks. The simplest sort of network is a feed-forward network, which has an input layer, one or 

more hidden layers, and an output layer. Recurrent networks are made to handle data sequences, 

such as text or time series data. Convolutional networks, which can automatically train to recognize 

features in images, are frequently employed for image identification applications. 

There are many different types of neural networks, including feedforward, recurrent, and 

convolutional networks. A feed-forward network, which contains an input layer, one or more hidden 

layers, and an output layer, is the most basic type of network. Data sequences, like text or time series 



 

                                                                        40 
 

data, are what recurrent networks are designed to manage. Convolutional networks are often used 

in image recognition applications because they can automatically learn to recognise features in 

images. 

 

4.8 Training of CNN: 

In order to get the intended network output, CNNs and ANNs in general require learning algorithms 

to alter their free parameters. Backpropagation is the most popular algorithm used for this purpose. 

Backpropagation determines how to modify a network's parameters in order to minimize errors that 

have an impact on performance by computing the gradient of an objective function. Overfitting, 

which is poor performance on a held-out test set after the network has been trained on a small or 

even large training set, is a typical issue with training CNNs, and DCNNs. This poses a significant 

barrier to DCNNs and has an impact on the model's capacity to generalize on unknown data. 

 

                                    

                                             Fig 4.8.1 Training process of CNN   

The "training" of the neural network is the process of changing the weights' values. 

The CNN starts off by using random weights. During CNN training, a sizable dataset of pictures 

with their matching class labels is fed into the neural network (cat, dog, horse, etc.). Each image is 

processed by the CNN network with values assigned at random, and after that, comparisons are 

made with the class label of the original image. If the output does not match the class label (which 

typically occurs early in the training process), the CNN algorithm makes a slight modification to 

the CNN neurons' weights to ensure that the output accurately fits the class label image. Using a 

process called backpropagation, adjustments are being made to the weights' values. 

Backpropagation streamlines tuning and facilitates modifications for greater precision. Every 



 

                                                                        41 
 

iteration of the picture dataset's training is referred to as a "epoch." Throughout the training process, 

the CNN travels through many series of epochs, altering its weights by the necessary little amounts. 

The neural network gets a little bit better at correctly categorizing and predicting the class of the 

training images after each epoch step. The weights are adjusted, but as CNN becomes better, the 

weight modifications get smaller and smaller. We employ a test dataset to assess the accuracy of the 

CNN after it has been trained. A collection of labelled photos that were not included in the training 

phase make up the test dataset. Each image is sent to CNN, whose output is then compared to the 

test image's real class label. The test dataset essentially assesses how well the Network performs 

predictions. A CNN is considered to be "overfitting" if its accuracy is good on training data but poor 

on test data. This is the result of the dataset being too small (training). 

 

4.9 CNN Architecture: 

The CNN architecture mainly consists of a list of layers that transform a 3-dimensional input volume 

of pictures into a 3-dimensional output volume. A N*N filter is applied to the input picture by 

connecting each neuron in the subsequent layer to a little portion of the output from the layer before. 

This is an important information to remember. 

It employs M filters, or feature extractors, which take out features like corners, edges, and so on. 

This is a list of the layers [INPUT-CONV-RELU-POOL-FC] that make up convolutional neural 

networks (CNNs). 

• INPUT — As its name implies, this layer stores the raw values of the pixels. Raw pixel values 

relate to the actual data of the image. INPUT [64643], for instance, is a 3-channeled RGB picture 

with 64 width, 64 height, and 3 depths. 

• CONV—This layer, which is one of the building blocks of CNNs, is where most of the 

computation takes place. For instance, if we apply 6 filters to the INPUT [64643], the volume 

[64646] might result. 

• RELU, sometimes referred to as a rectified linear unit layer, which augments the output of the 

layer preceding it using an activation function. In addition, the network would become non-linear 

due to RELU. 

• POOL Another element of CNNs is this layer, also referred to as the pooling layer. Down sampling, 

which comprises separate operations on each slice of the input and spatial scaling, is the main 

purpose of this layer. 

• FC refers to this layer as the fully connected layer, or more particularly as the output layer. It 

produces a volume of size 1*1*L, where L is the integer corresponding to the output class score, 

from which the output class score is calculated. 



 

                                                                        42 
 

 

 

                                        

 

                                                Fig 4.9 Architecture of CNN 

  



 

                                                                        43 
 

                               CHAPTER  5 

 
                         SOFTWARE TOOLS  

 
5.1 INTRODUCTION: 

The YOLO method was developed and implemented using a variety of software tools. Among the 

most popular software applications are: 
1. Darknet: YOLO is implemented using the framework for open-source neural networks 

which is Darknet.  supports   CPU and GPU acceleration and is written in C and CUDA. 

Darknet offers a selection of models that have already undergone training for tasks involving 

computer vision which include object detection. 

2. OpenCV: For processing videos and images, OpenCV is an open-source computer vision 

library. It offers a selection of features for object tracking, feature identification, and image 

editing. Darknet can utilize OpenCV to pre-process input image input and post-process 

YOLO output. 

3. Python: Python is a popular programming language that is used for YOLO implementation 

as well as other machine learning and deep learning activities. TensorFlow, Keras, PyTorch, 

and Scikit-learn are just a few of the machine learning libraries and frameworks available in 

Python. 

4. CUDA: Developed by NVIDIA for GPU acceleration, A parallel computing environment, 

and programming language is called CUDA and on NVIDIA GPUs, Darknet and CUDA 

can be utilized to accelerate the YOLO algorithm. 

5. Google Collaboratory: Also known as Colab, this cloud-based development environment 

gives users free access to TPUs and GPUs for deep learning and machine learning 

applications. Darknet, Python can be used with Colab to train and test YOLO models. 

A wide range of capabilities are offered by these software solutions for the implementation and 

improvement of the YOLO algorithm. Several combinations of these tools can be utilized to 

achieve optimum performance depending on the precise task at hand and the necessary 

resources. 

 

 

 

 



 

                                                                        44 
 

5.2 OPEN CV:  

Developers can create software programs that process and analyze visual data using the OpenCV 

software which is a suite for computer vision and machine learning. OpenCV, which was created 

by Intel in 1999, has undergone constant development by the open-source community and is 

now extensively utilized in fields including robotics, autonomous driving, security, and 

entertainment. For applications in image processing, computer vision, machine learning, and 

deep learning for recognizing faces and objects, respectively, motion analysis, and picture 

segmentation, OpenCV offers a complete range of functions and algorithms. The C++-based, 

performance-optimized library offers bindings for Python, Java, and other languages. OpenCV 

has gained popularity among researchers thanks to its wide array of tools and methods, both 

companies and individuals interested in developing computer vision applications. For the library 

to continue to be a leader in the computer vision industry, new features are continually being 

added. A well-known open-source machine learning and computer vision machine learning 

library is OpenCV (Open-Source which a Computer Vision Library). Although a sizable 

development community now maintains it, Intel first developed it in 1999.OpenCV offers a set 

of potent tools and algorithms that let programmers handle and analyze visual input. Although 

the library was created in C++, it also has Interfaces for Python, Java, and MATLAB. 

OpenCV's primary features include the following: 

1. Processing of images and videos: OpenCV includes tools for reading, writing, and 

modifying many formats of photos and movies. A comprehensive range of image processing 

procedures are also included, including feature detection, morphological operations, and 

picture filtering. 

2. Object Detection and Tracking: OpenCV comes with a number of techniques for detecting 

and tracking objects, such as HOG (Histogram of Oriented Gradients) and Haar cascades, 

features, and deep learning-based methods. 

3.  Machine Learning: Support vector machines (SVMs), decision trees, and neural networks 

are just a few of the machine learning methods that are included in OpenCV. Tasks requiring 

classification, regression, and grouping can be accomplished using these algorithms. 

4.  Deep Learning: TensorFlow, Keras, and PyTorch are just a few of the frameworks for deep 

learning that OpenCV supports. This makes it possible for programmers to create intricate 

deep learning models for tasks like segmentation, object detection, and picture recognition. 

5. 3D Vision: OpenCV has tools for structure from motion, stereo vision, and 3D 

reconstruction. These technologies can be used for activities like 3D object tracking and 

depth estimation. 



 

                                                                        45 
 

 Robotics, autonomous driving, security systems, healthcare, and entertainment are just a few of the 

fields and applications where OpenCV is extensively employed. New features and enhancements 

are continuously being added to the library by the developer community. The initial alpha release 

of OpenCV was made public at the IEEE Conference on Computer Vision and Pattern Recognition 

in 2000, and five beta releases followed between 2001 and 2005. The initial 1.0 version was released 

in 2006. A version 1.1 "pre-release" was made accessible in October 2008. In October 2009, 

OpenCV's second big update was released. OpenCV 2 makes a significant enhancement to the C++ 

interface with the goal of facilitating easier, new functions, more type-safe patterns, and improved 

performance implementations for existing ones particularly Several sectors and applications, 

including robotics, autonomous driving, security, and healthcare, making extensive use of OpenCV. 

Formal releases now every six months, and development is now being done by a self-sufficient 

Russian team with financial support from businesses. In August 2012, a nonprofit organization 

called OpenCV.org, which runs a developer and user website, took over maintenance for OpenCV. 

In August 2012, a nonprofit organization called OpenCV.org, which runs a developer and user 

website, took over maintenance for OpenCV. A renowned OpenCV developer, ITSEEZ, and Intel 

reached an acquisition agreement in May 2016. Real-time computer vision is the main emphasis of 

the OpenCV (Open-source Computer Vision) collection of programming functions. It was first 

developed by Intel, and later on, Willow Garage and Itseez provided funding (which was later 

acquired by Intel). The library is open-source and free to use under the conditions of the BSD 

license. It offers C++, Python, Java, and MATLAB interfaces and supports Windows, Linux, 

Android, and Mac OS. OpenCV makes extensive use of real-time vision applications and makes use 

of MMX and SSE instructions when they are released. The development of a fully functional CUDA 

and OpenCL interface is ongoing. 

 

5.3 GOOGLE COLAB: 

Google Colab, sometimes also referred as Google Collaboratory, is a cloud-based platform that 

Google makes available to researchers and developers for the purposes of deep learning, machine 

learning, and data analysis. With the help of a web browser, users may write, execute, and share 

Python code in this environment's Jupyter Notebook format. 

 

Google Colab has many salient features, including: 

 Free to use: Google's powerful computer capabilities are available to those who create and 

use Colab notebooks for free. 

 Collaborative: Users can share Colab notebooks with one another to collaborate in real-time. 



 

                                                                        46 
 

 Simple access to GPUs and TPUs: Colab offers simple accessibility to powerful computing 

tools like GPUs and TPUs, which can greatly accelerate computations for machine learning 

workloads. 

 Pre-installed libraries: TensorFlow, PyTorch, and sci-kit-learn are just a few of the pre-

installed libraries that come with Colab and are frequently used in data science and machine 

learning. 

 Google Drive integration: Colab's integration with Google Drive makes it simple for users 

to access and store their notes and data. 

Overall, Google Colab is an effective tool for deep learning, machine learning, and data analysis, 

and it offers researchers and developers a convenient environment. 

 

 5.4 PYTHON: 

A high-level, interpreted programming language is one of the main features Python is widely used 

in many different industries, such as artificial intelligence, data analysis, web development, 

scientific computing and more. Guido van Rossum first made this available in 1991, and since then 

it has grown to be most widely used programming languages worldwide. 

Python's readability and simplicity, which make it simple to learn and use, are two of its 

distinguishing characteristics. While writing Python code, complicated ideas are frequently 

expressed using a combination of indentation and plain English keywords in a clear, simple manner. 

Python is an interpreted language, which means that an interpreter runs the code line by line rather 

than compiling it into machine code beforehand. 

Many features, including as support for file I/O, networking, regular expressions, and others, are 

available in Python's extensive standard library. Additionally, there are numerous third-party 

libraries and frameworks that enhance Python's functionality for certain use cases. Examples include 

TensorFlow for machine learning, Django for web development, and NumPy for scientific 

computing. The Python programming language is frequently used to implement the YOLO (You 

Only Look Once) method. TensorFlow, PyTorch, and Darknet are just a few of the well-known 

deep learning frameworks that use the technique. Installing the appropriate deep learning framework 

and the desired YOLO implementation is often required to utilize YOLO in Python. To utilize 

YOLO with TensorFlow, for instance, you first need to install TensorFlow before downloading and 

configuring the YOLO implementation for TensorFlow. Once the YOLO implementation is 

configured, you may import an image or video and use Python code to send it across the YOLO 

network for object recognition. The YOLO algorithm will locate things in the picture or video and 

provide bounding boxes and labels for each object it finds. 



 

                                                                        47 
 

 

5.5 OpenCV's applications: 

 2D and 3D feature toolkits 

 Egomotion estimation  

 Facial recognition system 

  Gesture recognition  

 Human-computer interaction (HCI)  

  Structure from motion (SFM)  

 Object identification  

 Segmentation and recognition  

 Stereopsis stereo vision: depth perception from 2 cameras  

 Mobile robotics 

 Motion tracking  

 Robotics 

 Autonomous vehicles 

 Medical imaging 

 Augmented reality 

 Security and surveillances  

 Entertainment  

 Agriculture  

 

5.6 Google Colab application: 

Due to its capacity to offer a potent computing environment for data analysis, machine learning, and 

deep learning activities without requiring users to have access to expensive hardware, Google Colab 

has a wide range of applications across numerous fields. Google Colab's popular applications 

include the following: 

1. Data analysis: Using Python and well-known libraries like Pandas, NumPy, and Matplotlib, 

Colab offers an interactive environment for carrying out data analysis tasks. Users can import 

data from different sources, clean and prepare data, and carry out data analysis and visualisation. 

2. Machine learning: Colab gives users access to strong computing tools like GPUs and TPUs, 

which can be utilised to train machine learning models more quickly and effectively. It is a well-

liked option for machine learning research and development because it supports well-known 

machine learning frameworks like TensorFlow, PyTorch, and Scikit-learn. 



 

                                                                        48 
 

3. Deep learning:  Because it supports frameworks like Keras and TensorFlow, Colab is especially 

well-suited for deep learning jobs. Users can create new material using generative models like 

GANs, conduct image and text recognition jobs, train deep neural networks on massive datasets, 

and more. 

4. Education: In the classroom and online, Colab is a well-liked tool for teaching Python and data 

science principles. It gives students an easy-to-use environment in which to develop and execute 

Python code, and it enables professors and students to exchange and collaborate on notebooks. 

5. Research: Colab is used to conduct experiments, analyse data, and create new algorithms and 

models by researchers working in a variety of disciplines, including computer science, physics, 

and biology. 

 Overall, Google Colab is a flexible tool with a variety of applications, and as more users learn about 

it, the more popular it becomes. 

 

5.7 Libraries in open CV: 

For a variety of computer vision and machine learning activities, OpenCV (Open-Source Computer 

Vision Library) offers a large selection of libraries. The following are some of the key libraries that 

are included with OpenCV: 

1. Core Library: The Core Library offers fundamental data structures and image processing 

capabilities, including Mat objects for storing images and functions for manipulating images. 

2. Image Processing Library:  This library offers functions for fundamental image processing 

operations as thresholding, filtering, and morphological procedures 

3. Feature Detection and Description Library:  This library offers algorithms, like SIFT, SURF, and 

ORB, for identifying and describing features in images. 

4. Video Analysis Library: The Video Analysis Library offers tools for analysing videos, such as 

motion detection, object tracking, and optical flow 

5. Machine Learning Library: This is a  collection of methods for classification, regression, and 

clustering includes decision trees, k-NN, and SVM. 

6. Deep Learning Library: TensorFlow, Keras, and PyTorch are just many of the deep learning 

frameworks that OpenCV supports. 

7. Calibration Library: For 3D vision applications, this library offers capabilities for stereo 

calibration and camera calibration. 

8. Object Detection Library: The Object Detection Library contains a number of algorithms, 

including deep learning-based methods, Haar cascades, and HOG features, for identifying things 

in pictures and videos. 



 

                                                                        49 
 

9. 3D Vision Library: The 3D Vision Library offers tools for stereo vision, structure from motion, 

and 3D reconstruction. 

These are only a few of the libraries that are offered by OpenCV. OpenCV offers a complete 

collection of functionalities for creating computer vision applications with its large array of tools 

and methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                         

        

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                        50 
 

                      CHAPTER 6 

 

           RESULTS AND DISCUSSION 

 

 

 
        Object detection for traffic surveillance video 

 

 

 Fig: 6.1 Object detection using yolo v3 

The YOLO algorithm uses a deep convolutional neural network to identify objects in an input 

image. A single neural network is used by the algorithm to process the entire full image. The 

network then separates the image into areas, each of which contains bounding boxes and 

probabilities. Experiments were conducted on a database created from video recordings of 

automobiles on the road and highways, as well as from various types of movies. We have selected 

a traffic surveillance video that uses our method; the image displays object tracking images for 

surveillance cameras and includes several automobiles. The movie was broken into frames by the 

YOLO Algorithm, which carried out object detection. we have observed the object detection in the 

below image. The model's object detection is shown in the figure below. Bounding Boxes will 

appear when the objects are detected. The probability that object is a person is 0.99, the bench is 

0.27 and the car is 0.94, the bicycle is 0.84 and the truck is 0.86 respectively. We have performed 

object detection in Yolo v3 and Yolo v4 respectively. We can observe the difference in the results 

shown in the images below. We chose Yolo v4 as our algorithm but compared it with Yolo v3 

algorithm. Yolov4 is an enhancement to Yolov3. Now let us observe the results shown in the 

figures given below. 

 

 

 

6.1 RESULT: 



 

                                                                        51 
 

 

                           

                          Fig: 6.2 Object detection using yolo v4 

 

 
                    

                      Object tracking for traffic surveillance video 

 

 
 

 

Fig 6.3.1. Object tracking in a video at frame 1 

 

 

 

 

 
 

 

 

 

 

 

 



 

                                                                        52 
 

 

 
 

 

Fig 6.3.2. Object tracking in a video at frame 2 

 

 

 

 
 

 
Fig 6.3.3. Object tracking in a video at frame 3 

 

 

 
 

 

 

 

 

 

 

 

 



 

                                                                        53 
 

 

 
 

                                    

                                       Fig 6.3.4. Object tracking in a video at frame 4 

                                      

+ 

 

 

                    Fig: 6.3.5 Object tracking in a video at frame 5 

 

 

Figure depicts the images of object tracking for surveillance video, which contains several 

automobiles. We have selected a traffic surveillance video that is an application of our technique. 

The first frame of the video was used for object recognition by the YOLO Algorithm. The specific 

detected image was tracked in the following frames. As depicted in the picture, objects are tracked 

throughout a variety of frames and time intervals. 



 

                                                                        54 
 

 

 

 

 

   
 

 
Fig:6.4 Illustration of Experimental set-up 

 

                                    

 

                                    Real-time object tracking using YOLO 

 

Using the YOLO technique, we carried out real-time object recognition and tracking. Entity 

detection is carried out via YOLO, which presents the likelihood of the projected class while 

treating the issue as a regression problem. Convolutional neural networks (CNN) are used by the 

YOLO method to detect and track objects in real-time. A webcam is used to record the images 

and videos used as input. Following entity detection and the determination of each object's 

confidence score, which indicates how accurate the object is as the output of each frame, these 

profiles are then provided to the machine learning model. The Machine Learning model was 

tested on several things, and as a result, it correctly identified the objects in the video frame with 

a good prediction probability and provided the confidence score, which represents how confident 

the model is and how accurately the boundary box appears depends on whether the box contains 

the object.  



 

                                                                        55 
 

          

 

 

                          

 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Fig:6.5 object detection by the model in the video 

 

 

 

 

 

 

 

 

 



 

                                                                        56 
 

 

6.2 CONCLUSION: 

In order to accomplish object recognition and tracking, this project work proposes a straightforward, 

reliable methodology that can be used with object detection and tracking. This technique makes use 

of the YOLO Algorithm, which can anticipate and categorize bounding boxes in a single forward 

pass. This approach can purposefully improve the performance of detection. Compared to traditional 

machine learning algorithms, it is substantially faster. On the basis of accuracy, robustness, and 

computational effectiveness, the algorithms are evaluated. In this project, a comparative analysis of 

various object-identification techniques including RCNN, Faster RCNN, and YOLO is conducted. 

We discovered that YOLO is a lot quicker and more accurate than other object detection techniques. 

Thus, we trained the algorithm using the datasets. Real-time detection and tracking of the objects are 

possible with the YOLO algorithm. The camera module, which is a device that can be linked to a 

computer or desktop, provides the necessary input image. The PC or desktop itself allows us to see 

the outcomes. This technology could be applied and used in a variety of fields, including traffic 

analysis, face detection, medical image processing, and security monitoring. 

 

FUTURE SCOPE: 

Object tracking is being more widely adopted by corporations, with uses ranging from personal 

security to workplace productivity. Object tracking is used across a wide range of image processing 

applications, including image retrieval, security, surveillance, automated driving systems, and 

machine analysis. There are still significant challenges in the realm of object detection. Regarding 

prospective outcomes for future use cases of object tracking, the possibilities are incalculable. 

Applications for object tracking include traffic analysis, surveillance and security, video 

correspondence, robot vision, and activity. Counting people can also be done using object detection. 

It is used to analyze festival crowd measurements or retail performance. They will typically become 

more challenging when people leave the picture quickly, likewise because individuals are non-

inflexible objects). Person detection is a pivotal and required task in any intelligent video surveillance 

system because it provides the information needed to understand the semantics of the video 

recordings. 

 



 

                                                                        57 
 

 

 

 

 

 

 

 

Due to the potential for enhancing security frameworks, it has a noticeable augmentation to 

automotive applications. Human detection is a task that computer vision frameworks undertake 

for locating and tracking people. Finding every instance of a person in a photograph is the 

challenge of person detection, which has most commonly been accomplished by scanning the 

entire image at all possible scales and comparing a small area at each scale with the known 

arrangements of people. 

 

 



 

                                                                        58 
 

  

REFERENCES: 

 

[1] Mohana, HV Ravish Aradhya, “Object Detection and Tracking using Deep Learning and 

Artificial Intelligence for Video Surveillance Applications,” (IJACSA) International Journal of 

Advanced Computer Science and Applications, Vol. 10, No. 12, 2019, pp. 517-530. 

 

[2] V. D. Nguyen et all., “Learning Framework for Robust Obstacle Detection, Recognition, and 

Tracking”, IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1633-1646, 

June 2017. 

 

 [3] P. Wang et all., “Detection of unwanted traffic congestion based on existing surveillance system 

using in freeway via a CNN-architecture traffic net”, IEEE Conference on Industrial Electronics 

and Applications (ICIEA), Wuhan, 2018, pp. 1134-1139 .  

 

[4] H. C. Baykara et all., “Real-Time Detection, Tracking and Classification of Multiple Moving 

Objects in UAV Videos”, 29th IEEE International Conference on Tools with Artificial Intelligence 

(ICTAI), Boston, MA, 2017, pp. 945-950.  

 

[5] K. Muhammad et all., “Convolutional Neural Networks Based Fire Detection in Surveillance 

Videos”, IEEE Access, vol. 6, pp. 18174- 18183, 2018. 

 

 [6] Redmon, Joseph, et al.” You only look once: Unified, real-time object detection.” Proceedings 

of the IEEE conference on computer vision and pattern Recognition’, 2016. 

 

 [7] Aloysius, Neena, and M. Geetha.” A review on deep convolutional neural networks.” 2017 

International . 

 

[8] Z. Jiang, L. Zhao, S. Li and Y. Jia, "Real-time object detection method based on improved 

YOLOv4-tiny, " ArXiv, vol: abs/2011.04244, 2020. 

 

 [9] K. M. Babu and M. V. Raghunadh, "Vehicle number plate detection and recognition using 

bounding box method," 2016 International Conference on Advanced Communication Control and 

Computing Technologies (ICACCCT), 2016, pp. 106-110, Doi: 

10.1109/ICACCCT.2016.7831610.  

 

 

 

 



 

                                                                        59 
 

  [10] K. V. Arya, S. Tiwari and S. Behwalc, "Real-time vehicle detection and tracking," 2016 13th 

International Conference on Electrical Engineering/Electronics, Computer, Telecommunications 

and Information Technology (ECTI-CON), 2016, pp. 1-6, Doi: 10.1109/ECTICon.2016.7561327. 

 

 [11] M. A. Bin Zuraimi and F. H. Kamaru Zaman, "Vehicle Detection and Tracking using YOLO 

and Deep SORT," 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial 

Electronics (ISCAIE), 2021, pp. 23-29, Doi: 10.1109/ISCAIE51753.2021.9431784.  

 

[12] X. Gu, Z. Chen, T. Ma, F. Li and L. Yan, "Real-Time vehicle detection and tracking using deep 

neural networks," 2016 13th International Computer Conference on Wavelet Active Media 

Technology and Information Processing (ICCWAMTIP), 2016, pp. 167-170, Doi: 

10.1109/ICCWAMTIP.2016.8079830.  

 

[13] Z.Q. Zhao, P. Zheng, S.T. Xu, and X. Wu, "Object detection with deep learning,": A review. 

arXiv e-prints, arXiv:1807.05511, 2018.  

 

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time 

object detection, " In 2016 IEEE conference on computer vision and pattern recognition, 

doi.org/10.1109/cvpr.2016.91 (pp. 779–788): IEEE. 

 

[15] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517-6525, Doi: 

10.1109/CVPR.2017.690. 

 

[16] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018. arXiv preprint 

arXiv:1804.02767. 

 

[17] A. Bochkovskiy, C.Y. Wang, and H.Y. M. Liao, “YOLOv4: Optimal speed and accuracy of 

object detection,” arXiv preprint arXiv:2004.10934, 2020.  

 

[18] Mahalingam, T. and Subramoniam, M. (2020), "A robust single and multiple moving object 

detection, tracking and classification", Applied Computing and Informatics, Vol. ahead-ofprint No. 

ahead-of-print, 


	99008b2bfc59fbfaf7e0ae9def5daaa0429b3afa5c49f1273a3646b20d0e41a7.pdf
	ccb55c4658cb0c471c77d30b1dcc34c1a7c5cbdb2900507b8be7d08e8a5edc0e.pdf
	99008b2bfc59fbfaf7e0ae9def5daaa0429b3afa5c49f1273a3646b20d0e41a7.pdf

