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ABSTRACT 

 

Color information is the strong descriptor of an image and such information is 

brightness known as luminance and color known as chrominance. Colourization of 

images is done manually for a long time. In order to increase the speed and accuracy 

we use a technique called auto-encoding and auto-decoding. By using this method we 

perform down sampling of an image for processing and up-sampling of an image for 

reconstruction of target image. The electronic microscope produces a black & white 

images but some of the microscopes are producing color images based on their 

magnified level, so that to overcome this drawback we introduce a neural network to 

produce the color images and which is not depending on any magnified level. There 

are many types of colourization techniques there like RGB colorization, Pro-Photo, 

Rec709, YUV color spaces etc. In this project we implemented deep-learning and 

convolution neural networking techniques with keras sequential algorithm. 

It includes pre-processing, feature extraction, classification and model generation. The 

Lab color space we used for obtaining better results and we employed Lab color space 

and auto-encoder architecture in the final model. This project is also useful to provide 

the color to the images coming from satellites. Image colourization is applicable in 

many areas such as colourization of old black and white photos, old movies and 

scientific images. 

Keywords—Colorization, Convolution neural network, Gray scale, Lab Colour space, 

Chrominance; 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction:- 

The topic of coloring black and white images has gained a lot of interest in image 

processing research, as it has a significant impact on image analysis and information 

retrieval. Color images contain more information than grayscale images, making them 

more useful in extracting information. Coloring historical images, improving 

surveillance footage, and enhancing microscopic images are some common 

applications of image colorization. 

Colorizing a grayscale image is a complex task that requires prior knowledge 

about the image content and manual adjustments to achieve a high-quality result. There 

are multiple ways to assign colors to the pixels in an image, making it challenging to 

find a distinctive solution. 

Autoencoders, a class of convolutional neural networks, are used to automate 

the image colorization process and generate results that look natural to the human eye. 

Proper selection of color spaces can improve the training and performance of the neural 

network. The CIE Lab* color space is employed for color conversion, where the model 

predicts chroma values given the Luminance value. InceptionResNetV2, a powerful 

network with high accuracy, is used as a global feature extractor to better understand 

the semantic content of the image during the colorization process. The Mean Squared 

Error (MSE) is used as the loss objective function to update the model parameters. This 

research proposes a deep neural network that can colorize cultural, heritage, and 

historical images of ancient Nepal in a few seconds without user intervention 

Colorization of black and white images is the process of adding color to a 

grayscale or monochromatic image. There are several ways to colorize black and white 

images, including manual colorization using photo editing software, and automatic 

colorization using machine learning algorithms. 

Manual colorization involves adding color to each pixel of the image manually 

using photo editing software. This method requires a lot of time and effort, but it can 

produce very accurate and detailed results. 

Automatic colorization, on the other hand, uses machine learning algorithms to 

analyze and understand the content of the image, and then add color to the grayscale 

image automatically. This method is faster and less labor-intensive than manual 

colorization, but the results may not always be as accurate or detailed. 

There are several machine learning algorithms used for automatic colorization, 

including deep neural networks. These algorithms learn from large datasets of colored 
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images and grayscale images, and then use this knowledge to add color to new grayscale 

images. 

Overall, colorization of black and white images can be a fun and creative way 

to bring old photographs and historical images to life Colorization is the process of 

adding colors to black and white or grayscale images. One approach to colorization is 

to use the LAB color space, which separates the luminance (brightness) component (L) 

from the chromaticity (color) components (a and b). In LAB space, the L component is 

the grayscale image, while the a and b components represent the color information. 

Here are the steps for image colorization with LAB color spaces: 

1.Convert  RGB  to  LAB 

2.Separate the L, a, and b components. 

3.Apply colorization to the a and b components. This can be done using various 

techniques, such as nearest-neighbor interpolation, color transfer, or machine learning 

methods like convolutional neural networks (CNNs). 

4.Combine the L component with the colorized a and b components to obtain the final 

colorized image. 

5.Convert the colorized image back to RGB color space. 

Note that colorization is a challenging task since it requires inferring the missing 

color information from the grayscale input. As a result, the colorization results may not 

always be accurate, and human intervention may be required to refine the colorization 

output. 

There are several methods of image colorization, ranging from manual 

techniques to automated algorithms. Here are a few common methods: 

Manual Colorization: This involves manually coloring the image using image editing 

software such as Photoshop or GIMP. This technique requires artistic skills and is time-

consuming, but it provides a high degree of control over the final result. 

Color Transfer: This technique involves transferring the color palette from a source 

image to a target image using statistical analysis. This method works best when the 

source and target images have similar content and lighting conditions. 

Deep Learning-Based Methods: These methods use convolutional neural networks 

(CNNs) to learn the colorization process. These models are trained on a large dataset 

of grayscale and corresponding color images, and then use this knowledge to colorize 

new grayscale images. 

Hybrid Methods: These methods combine manual and automated techniques to 

achieve the desired result. For example, an artist may start with a manual colorization 

and then use a deep learning model to refine the result. 
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Interactive Methods: These methods allow users to interactively colorize an image by 

providing hints or strokes on the grayscale image, which are then used by the algorithm 

to infer the color. This method is particularly useful when the user has some knowledge 

of the color distribution in the image. 

Image colorization is used for various purposes, such as: 

Restoration of Old Photographs: Image colorization can be used to restore old black 

and white photographs by adding color to them. This helps to preserve the historical 

significance of the image and make it more visually appealing. 

Visual Effects: Image colorization is also used in the film and entertainment industry 

to add color to black and white films or to enhance the color of digital images. 

Medical Imaging: Image colorization can be used in medical imaging to highlight 

specific structures or areas of interest in medical images. For example, colorization can 

be used to differentiate between different types of tissue in MRI or CT scans. 

Augmented Reality: Image colorization can be used in augmented reality applications 

to add color to real-world objects or images captured by the camera of a mobile device. 

Educational Purposes: Image colorization can be used for educational purposes, such 

as colorizing diagrams, charts, and maps, to make them more visually appealing and 

easier to understand. 

Overall, image colorization can be a useful tool for enhancing the visual appeal of 

images, preserving historical photographs, and providing insights in various fields 

1.2 Project Objective:- 

Bringing color to electron microscope images and gray scale images for getting the 

appropriate color images  is a tricky problem. It could possibly be said that color doesn’t 

exist at that scale, because the things imaged by an electron microscope are smaller than 

the wavelength of visible light. But that hasn’t stopped scientists from trying, or at least 

developing techniques to approximate it. 

The latest, described in an article of cell by scientists from the University of 

California, San Diego, attaches artificial color to biological structures, which could help 

us better understand the structures and functions within cells. They’re the first to use 

this method on organic material, matching up to three colors and making, in one 

example, a Golgi region appear green and a plasma membrane red. 

The normal microscopic devices are producing the grayscale images as output. 

This gray scale image will contain only 2 levels of color one is black and another one 
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is white .The range of these levels from 0-255. In digital images, grayscale means that 

the value of each pixel represents only the intensity information of the light. Such 

images typically display only the darkest black to the brightest white. In other words, 

the image contains only black, white, and gray colors, in which gray has multiple levels. 

Nowadays some of the electronic microscopes are used to produces the colour 

images as output with some magnifile level that is 250 magnifiles levels only.so, to 

move forward the magnifiles level the getting colour will be changed so, to decrease 

this disadvantage  or issue convolutional auto encoders are used to produces the colour 

information which will gives the more information compared to the previous identified 

problems.  

 

1.3 Project Outline:- 

To produce the colour images from gray scale images we used the following approach:- 

In digital photography computer-generated imagery and colorimetry a grayscale 

image is one in which value of each pixel is a single sample representing only an amount 

of light; that is, it carries only intensity information. Grayscale images, a kind of black-

and-white or gray monochrome, are composed exclusively of shades of gray. The 

contrast ranges from black at the weakest intensity to white at the strongest. 

 After that we perform rescaling and normalization operations on the gray scale 

image .The rescaleing operation means each input gray scale image having its own size 

so that to produce our target output we are performs the rescaling operation and 

normalization is the process of dividing image with  target size of 255 this is used to 

maintain each pixel value of an image in the specified range this range will provides 

the enhancement. 

We later perform the RGB to LAB conversion of image and we represent each 

channel with their pixel values that pixel values are having some weight and that 

weights are provided as input to the convolutional auto encoders. 

Auto encoders are neural networks where the architecture itself is designed such 

that the target output is the input. Down sampling takes place at the input image and 

upsampling takes place at the reconstructed image and after that we perform image pre 
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and post processing.for image preprocessing we have to move the image from one layer 

to another that means output of one layer is fed to input to the other layer this can be 

achieved by using keras algorithm with importing the sequential libraries.initially a 

series of CNN and down saplings that are used to reduces the dimensional 

representation of image data and then use the CNN enough samples to regenerate the 

colour images after getting the colour image we perform evaluation operation i.e, 

compare and observing the accuracy and mean error at the output. 

For getting colour information of the gray scale images the render factor will 

perform the major role in this process.The default value of 35 has been carefully chosen 

and should work ok for most scenarios. This determines the resolution at which the 

color portion of the image is rendered. Lower resolution will render faster, and colors 

also tend to look more vibrant. Older and lower quality images in particular will 

generally benefit by lowering the render factor. Higher render factors are often better 

for higher quality images, but the colors may get slightly washed out.  

 

   



 

 

 

 

 

 

 

CHAPTER 2 

IMAGES AND COLOR SIGNIFICANCE  

 

 

 

 

 

 

 

 

 



8 
 

CHAPTER 2 

IMAGES AND COLOR SIGNIFICANCE  

 

2.1 TYPES OF IMAGES:- 

2.1.1 Gray Scale Images:- 

A grayscale image is an image in which each pixel is represented by a single value that 

represents the brightness or intensity of that pixel. The term "grayscale" refers to the 

fact that the image contains shades of gray, as opposed to color. In a grayscale image, 

the value of each pixel typically ranges from 0 (black) to 255 (white), with intermediate 

values representing shades of gray. Grayscale images are often used in applications 

where color is not necessary or would be distracting, such as medical imaging, scientific 

visualization, and some forms of digital art. They are also useful in situations where 

color information is not available, such as when working with older or low-resolution 

images. 

  To convert a color image to grayscale, one common method is to take the 

average of the red, green, and blue values for each pixel. This results in a single value 

that represents the overall brightness of the pixel. Other methods for grayscale 

conversion exist as well, such as using the luminance values of the colors.  

 

Fig 2.1: Gray Scale Image 

2.1.2 Colour Images:- 

A color image is an image that contains information about the colors of the objects or 

scenes it represents. In a digital color image, each pixel is represented by a combination 
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of red, green, and blue (RGB) values that determine the intensity of each color channel. 

Other color models, such as the cyan, magenta, yellow, and key (CMYK) model used 

in printing, may also be used for color images. 

Color images are used in a wide range of applications, including photography, 

art, design, and scientific visualization. They provide a more realistic representation of 

the world than grayscale images, and can convey important information about the 

properties of objects and scenes, such as their hue, saturation, and brightness. 

In addition to RGB and CMYK, there are many other color models used for 

color image representation, such as the hue, saturation, and value (HSV) model and the 

LAB color space. Each color model has its own advantages and disadvantages and is 

better suited to certain applications than others. 

Color images can be captured using digital cameras or scanners, and can also be 

created using digital image editing software. They can be displayed on computer 

screens, printed on paper or other materials, or projected onto screens or walls. 

 

Fig 2.2: Colour Image 

2.1.3 Monochrome Image:- 

A monochrome image is an image that consists of shades of a single color, typically 

black or white. Monochrome images are often used in applications where color is not 

necessary or would be distracting, such as in document scanning or black-and-white 

photography. 

There are different types of monochrome images, including binary images, 

grayscale images, and sepia images. 
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Binary images are black-and-white images in which each pixel is either black 

or white, with no shades of gray in between. They are commonly used for image 

processing and analysis, such as in optical character recognition (OCR) and computer 

vision. 

Grayscale images are images that contain shades of gray between black and 

white. Each pixel in a grayscale image is represented by a single value that represents 

the intensity or brightness of that pixel. Grayscale images are often used in scientific 

imaging, medical imaging, and digital art. 

Sepia images are monochrome images that have a warm, brownish tone. They 

are often used to give photos a vintage or antique look. 

Monochrome images can be created from color images through various methods 

such as desaturation or by applying a monochrome filter. They are also commonly used 

as an intermediate step in image processing and analysis, such as in edge detection or 

image segmentation. 

 

Fig 2.3:Monochrome Image 

2.2 APPLICATIONS 

2.2.1 Astronomy :- 

Astronomy is the study of elysian objects, similar as stars, globes, worlds, and other 

marvels in the observable macrocosm. It's a natural wisdom that involves the 

observation and analysis of these objects, their stir, and their parcels, as well as the 

physical laws that govern their geste Astronomy has a long history, dating back to 
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ancient societies similar as the Babylonians and the Greeks. moment, astronomers use 

a wide range of tools and ways to study the macrocosm, including telescopes, 

spacecraft, and computer simulations. Some of the major areas of study in astronomy 

include  Astrophysics the study of the physical parcels and geste of elysian objects, 

similar as stars, worlds, and black holes.  Planetary wisdom the study of globes and 

other objects in our solar system, including their conformation, composition, and 

elaboration.  

   Cosmology the study of the origin, elaboration, and structure of the macrocosm 

as a whole, including the Big Bang proposition and the hunt for dark matter and dark 

energy. Astronomy has numerous practical operations, including navigation, 

timekeeping, and satellite dispatches. It also has important counteraccusations for our 

understanding of the macrocosm and our place within it.  

 

Fig 2.4: Astronomy 

2.2.2 Archeology:- 

Archaeology is the study of mortal history and prehistory through the excavation, 

analysis, and interpretation of material remains. It's a multidisciplinary field that 

combines rudiments of anthropology, history, art history, geology, and other lores to 

reconstruct and understand the history. Archaeologists study a wide range of vestiges 

and features, including armature, crockery, tools, bones, and other objects left before 

by once societies. They use a variety of ways to shovel and dissect these accoutrements, 

including remote seeing, surveying, and laboratory analysis.  Some of the major areas 

of study in archaeology include neolithic archaeology the study of the societies and 

societies that was before written history, grounded on the material remains they left 

before.  Classical archaeology the study of the societies and societies of ancient Greece 
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and Rome, grounded on their material remains and erudite sources. literal archaeology 

the study of more recent societies and societies that left behind written records, similar 

as social agreements or artificial spots.  

Archaeology has important counteraccusations for our understanding of mortal 

history and the development of mortal culture. It can help us to understand how 

different societies lived, worked, and interacted with each other, and can exfoliate light 

on the origins and elaboration of colorful mortal traditions and practices. 

Archaeological exploration can also give perceptivity into contemporary issues, similar 

as artistic heritage preservation and the impacts of mortal exertion on the terrain. 

  

Fig 2.5: Archeology 

2.2.3 Electron Microscopy:- 

Electron microscopy is a technique that uses a beam of electrons to create 

high-resolution images of specimens at a very small scale, typically in the 

range of nanometers to micrometers. This makes it a valuable tool for a 

wide range of scientific fields, including biology, materials science, and 

nanotechnology. 

There are several different types of electron microscopy techniques, 

including: 

Scanning Electron Microscopy (SEM): In SEM, a focused beam of 

electrons is scanned across the surface of a sample, and the resulting 
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backscattered or secondary electrons are detected to create a detailed image 

of the sample surface. 

Transmission Electron Microscopy (TEM): In TEM, a focused beam of 

electrons is transmitted through a thin sample, and the resulting electrons 

that pass through the sample are detected to create an image of the internal 

structure of the sample. 

Scanning Transmission Electron Microscopy (STEM): In STEM, a 

focused beam of electrons is transmitted through a thin sample, and the 

resulting electrons that pass through the sample are detected to create an 

image of the internal structure of the sample, similar to TEM. However, in 

STEM, the electron beam can also be scanned across the sample surface to 

create a more detailed image. 

Electron microscopy has several advantages over other microscopy 

techniques, including its high resolution and ability to image samples at a 

very small scale. However, it also has some limitations, such as the 

requirement for vacuum conditions and the potential for sample damage 

due to the high-energy electron beam. Nonetheless, electron microscopy is 

an important tool for scientific research and has numerous applications in 

a variety of fields.  

 

Fig 2.6: Electron Microscopy 
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2.3 COLOUR SPACE 

2.3.1 Introduction:- 

A color space, also known as a color model or color system, is a way of representing 

colors in a mathematical and numerical form. Color spaces are used in digital imaging, 

video, and other applications where color accuracy and consistency are important. 

There are many different color spaces, each with its own advantages and disadvantages. 

Some of the most common color spaces include: 

RGB: the most common color space used in digital imaging and display, which 

represents colors as a combination of red, green, and blue values. 

CMYK: a color space used in printing, which represents colors as a combination of 

cyan, magenta, yellow, and black values. 

HSB/HSL: color spaces that represent colors as combinations of hue, saturation, and 

brightness (HSB) or hue, saturation, and lightness (HSL) values. 

LAB: a color space that separates color information into lightness (L), green-red (a), 

and blue-yellow (b) components, making it useful for color correction and image 

analysis. 

Different color spaces have different gamuts, or ranges of colors that they can 

represent. Some color spaces, such as RGB, have a wider gamut than others, which can 

lead to more vibrant and accurate color representation. However, the choice of color 

space depends on the specific application and the requirements for color accuracy and 

consistency.  

2.3.2 RGB Color Space:- 

The RGB color space is a widely used color model that represents colors as a 

combination of red, green, and blue values. It is the primary color space used in digital 

imaging, including computer monitors, digital cameras, and other display technologies. 

In the RGB color space, each color is represented as a combination of red, green, and 

blue values, typically ranging from 0 to 255. For example, pure red would be 

represented as (255,0,0), pure green as (0,255,0), and pure blue as (0,0,255). Other 
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colors are represented as a combination of these values, such as yellow as (255,255,0) 

and purple as (128,0,128). 

The RGB color space is an additive color model, meaning that the colors are 

created by adding different amounts of light together. When all three colors are added 

together at full intensity (255,255,255), it creates pure white, while adding no colors 

(0,0,0) creates pure black. 

One of the advantages of the RGB color space is its wide gamut, or range of 

colors that it can represent. This makes it well-suited for digital imaging and display 

technologies, where accurate and vibrant color representation is important. 

However, because the RGB color space is device-dependent, meaning that the 

color representation can vary between different devices and displays, it is important to 

use color management tools and techniques to ensure color accuracy and consistency. 

 

Fig 2.7: RGB Color Space 

2.3.3 LAB Color Space:- 

The LAB color space is a device-independent color model that separates color 

information into three components: lightness (L), green-red (a), and blue-yellow (b). 

This makes it well-suited for color correction, image analysis, and other applications 

where precise color information is important. 

In the LAB color space, lightness (L) ranges from 0 (pure black) to 100 (pure 

white), while the green-red (a) and blue-yellow (b) axes can range from -128 to 127. 

Positive values along the a-axis represent green tones, while negative values represent 
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red tones. Similarly, positive values along the b-axis represent yellow tones, while 

negative values represent blue tones. 

One of the advantages of the LAB color space is that it has a wide gamut, or 

range of colors that it can represent, which makes it well-suited for color-critical 

applications such as printing, where accurate and consistent color reproduction is 

important. 

Another advantage of the LAB color space is that it is device-independent, 

meaning that it is not tied to any specific device or display technology. This allows for 

consistent color representation across different devices and platforms. 

However, because the LAB color space is not as intuitive as other color spaces 

such as RGB, it may require some training and experience to use effectively. 

Additionally, some image editing software may not support the LAB color space, which 

can limit its use in certain applications.  

 

Fig (A) 

 

Fig (B) 

Fig 2.8((a)(b)):LAB Color Space 
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2.3.4 Advantages:- 

Color spaces have several advantages in various applications, including: 

Accurate color representation: Color spaces allow for accurate representation of 

colors, which is important in many industries, such as printing, graphic design, and 

photography. 

Wide gamut: Different color spaces have different gamuts, or ranges of colors that they 

can represent. Some color spaces, such as RGB, have a wider gamut than others, which 

can lead to more vibrant and accurate color representation. 

Consistency: Color spaces ensure that colors are consistent across different devices and 

platforms, which is important in applications such as branding and marketing. 

Color correction: Color spaces such as LAB are useful for color correction and image 

analysis, allowing for precise adjustments of color values. 

Compatibility: Color spaces are widely used and supported by a range of software and 

hardware, making it easy to work with them in various applications. 

Overall, color spaces provide a standardized way of representing colors that is 

accurate, consistent, and widely supported, making them an important tool in many 

industries and applications.  

2.3.5 Disadvantages:- 

While color spaces have many advantages, there are also some disadvantages to 

consider, such as: 

Complex mathematics: Some color spaces, such as LAB, are based on complex 

mathematical formulas that can be difficult to understand and work with. 

Device dependence: While some color spaces, such as LAB, are device-independent, 

others, such as RGB, are device-dependent, meaning that the color representation can 

vary between different devices and displays. This can lead to inconsistencies in color 

representation. 

Limited gamut: Some color spaces have a limited gamut, or range of colors that they 

can represent, which can result in less accurate color representation. 
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Compatibility issues: Some software and hardware may not support certain color 

spaces, which can limit their use in certain applications. 

Cost: Some color spaces, such as those used in professional printing, can be expensive 

to implement and maintain. 

Overall, the advantages of color spaces often outweigh the disadvantages, but it 

is important to consider these factors when selecting a color space for a particular 

application. 

2.3.6 Application:- 

Color spaces have many practical applications in various industries and fields, 

including: 

Graphic design: Color spaces such as RGB and CMYK are commonly used in graphic 

design to ensure accurate and consistent color representation in print and digital media. 

 Photography: Color spaces such as Adobe RGB and ProPhoto RGB are commonly 

used in photography to capture a wide range of colors and ensure accurate color 

representation in post-processing. 

Printing: Color spaces such as CMYK and Pantone are used in printing to ensure 

accurate and consistent color representation in printed materials. 

Video production: Color spaces such as Rec. 709 and DCI-P3 are commonly used in 

video production to ensure accurate color representation in film and television. 

Medical imaging: Color spaces such as DICOM and CIELAB are used in medical 

imaging to ensure accurate and consistent color representation in medical images and 

scans. 

Computer graphics: Color spaces such as sRGB and Adobe RGB are commonly used 

in computer graphics to ensure accurate and consistent color representation in digital 

images and animations.  

Overall, color spaces play an important role in ensuring accurate and consistent 

color representation in a wide range of applications, from graphic design and 

photography to printing and medical imaging. 

 



 

 

 

 

CHAPTER 3 

METHODOLOGY 

 

 

 

 

 

 

 



20 
 

CHAPTER 3 

METHODOLOGY 

3.1 Introduction:- 

Autoencoders are a type of neural network that can be used for unsupervised learning, 

which means they can find patterns in data without being explicitly told what to look 

for. The basic idea of an autoencoder is to take an input, encode it into a smaller 

representation, and then decode it back into the original input. The goal is to train the 

network to minimize the difference between the original input and the output produced 

by the decoder. 

Autoencoders can be used for a variety of tasks, such as data compression, 

denoising, and anomaly detection. They have also been used in fields such as image 

and speech recognition, natural language processing, and recommender systems. 

There are different types of autoencoders, such as the basic autoencoder, 

convolutional autoencoder, and variational autoencoder. Each type has its own unique 

characteristics and is used for different types of data. 

Overall, autoencoders are a powerful tool for unsupervised learning and have a 

wide range of applications in various fields. 

3.2 implementation steps:- 

3.2.1 Image Pre-Processing:- 

Image Resizing:- 

In order to be processed by a neural network, images must be resized to a uniform size. 

The degree of resizing required depends on the fixed size used, with larger fixed sizes 

requiring less resizing. By minimizing the amount of shrinking needed, the features and 

patterns within the image are less distorted. 

Normalization:-  

Data normalization is an important step that ensures that each input parameter (pixel, 

in this case) has a similar data distribution. This makes convergence faster while 

training the network. Data normalization is done by subtracting the mean from each 
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pixel and then dividing the result by the standard deviation. The distribution of such 

data would resemble a Gaussian curve centered at zero. For image inputs we need the 

pixel numbers to be positive, so we might choose to scale the normalized data in the 

range [0,1] or [0, 255]. 

3.2.2 Gray Scale Image:- 

  Autoencoders are neural networks that are trained to reconstruct their input data, 

usually by compressing it into a lower-dimensional representation and then decoding it 

back into the original input format. 

Grayscale images can be obtained in autoencoders by treating the image as a 

matrix of pixel values and using a single channel to represent the grayscale intensity. 

This means that each pixel value is represented by a single number, typically between 

0 and 255, with 0 being black and 255 being white. 

During training, the autoencoder is fed with a set of grayscale images as input 

and the goal is to reconstruct these images with as little loss of information as possible. 

The encoder part of the autoencoder learns to encode the input image into a lower-

dimensional representation, while the decoder part learns to decode this representation 

back into the original image format. 

To obtain grayscale images, the input images are usually preprocessed to 

convert them from RGB format to grayscale format. This can be done by taking the 

average of the three RGB channels or by using a weighted average based on the 

luminosity of each color channel. 

Once the autoencoder is trained, it can be used to generate new grayscale images 

by encoding a lower-dimensional representation of the image and then decoding it back 

into the grayscale format. These generated images may not be exact replicas of the 

original images, but they should be similar enough to be recognizable. 

3.2.3 Modal Training:- 

Upsampling:-  

In auto encoders, upsampling is a process of increasing the spatial resolution of the 

input volume (i.e., the width and height dimensions), while reducing the depth 
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dimension. It is the opposite of downsampling or pooling, which reduces the spatial 

resolution while increasing the depth dimension. 

Upsampling is often used in CNNs for tasks such as image segmentation, where 

the output needs to be a pixel-wise classification of the input image. One common way 

to perform upsampling in a CNN is to use a transposed convolution (also known as a 

deconvolution or fractionally-strided convolution). 

A transposed convolution applies a set of learnable filters to the input, but 

instead of performing a normal convolution operation, it performs an "inverse" 

operation, where the output pixels are spread out over a larger area of the input feature 

map. This effectively increases the spatial resolution of the output feature map. 

Another common way to perform upsampling is to use nearest-neighbor 

interpolation or bilinear interpolation, which are simpler and faster than transposed 

convolutions, but may not be as effective in some cases. 

Overall, upsampling is an important technique in CNNs for increasing the 

spatial resolution of feature maps, which can lead to better performance in tasks such 

as image segmentation and object detection. 

Downsampling:- 

In auto encoders, downsampling or pooling is a technique used to reduce the spatial 

resolution of the input feature maps while increasing the depth dimension. This is done 

to reduce the computational complexity of the network and extract more abstract 

features from the input. 

There are several types of pooling operations that can be used in CNNs, 

including max pooling, average pooling, and stochastic pooling. Max pooling is the 

most common type of pooling and involves dividing the input feature map into non-

overlapping rectangular regions and taking the maximum value within each region. 

Average pooling works similarly but takes the average value within each region. 

Stochastic pooling randomly selects the maximum value within each region based on a 

probability distribution. 

Pooling operations can be applied at various stages of the network, typically 

after one or more convolutional layers. The pooling operation reduces the size of the 
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feature maps, which reduces the computational cost and memory requirements of the 

subsequent layers. Additionally, pooling can help the network to be more robust to 

small translations of the input and can prevent overfitting. 

However, too much pooling can cause the network to lose too much spatial 

information, leading to a loss in accuracy. Therefore, the choice of pooling operation 

and the amount of pooling should be carefully tuned based on the specific task and 

dataset. 

3.2.4 Evaluation:-  

we evaluate a trained model and for evaluation, we feed the image which 

was not shown to the trained image before. 

3.3 MODEL ARCHITECTURE:- 

  1. ENCODER 

  2. DECODER 

  3. FUSION 

 

Fig 3.1: MODEL CNN ARCHITECTURE 

3.3.1 Introduction: 
In convolutional neural networks (CNNs), encoder, fusion, and decoder operations are 

often used in architectures that involve encoding the input data into a low-dimensional 

feature representation, fusing information across different modalities or spatial regions, 

and decoding the feature representation back into an output. 
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Encoder:The encoder operation in a CNN is used to extract features from the input 

data. This typically involves applying a series of convolutional and pooling layers to 

the input image or volume, resulting in a compressed feature representation that 

captures important visual or spatial patterns in the data. 

Fusion:Fusion operations in CNNs are used to combine information from multiple 

sources or modalities. For example, in multi-modal image classification tasks, features 

from different image modalities (e.g., RGB and infrared) can be fused to improve 

performance. Similarly, in spatial fusion, features from different regions of an image 

can be combined to capture a more holistic view of the scene. 

Decoder:The decoder operation in a CNN is used to convert the feature representation 

back into an output, such as a segmentation map or a class label. This typically involves 

applying a series of deconvolutional or upsampling layers to the compressed feature 

representation, followed by a final classification or regression layer to produce the 

output. 

These operations can be combined in various ways to form different CNN 

architectures, such as U-Net, which uses an encoder-decoder architecture with skip 

connections to preserve spatial information, or DenseNet, which uses a dense fusion 

approach to encourage feature reuse across layers. 

Number of layers:The number of layers in a Convolutional Neural Network (CNN) 

varies depending on the specific architecture and the task at hand. However, a typical 

CNN consists of multiple layers, such as convolutional layers, pooling layers, and fully 

connected layers. 

A simple CNN architecture may consist of just a few convolutional and pooling 

layers followed by fully connected layers. In contrast, a more complex architecture such 

as ResNet can have hundreds of layers. 

In general, deeper networks tend to have better performance for complex tasks 

such as image recognition, but they may also require more computational resources and 

longer training time. 
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3.3.2 Applications of autoencoders 

  Autoencoders are neural networks that can be used for a variety of applications in 

machine learning and artificial intelligence. Some of the common applications of 

autoencoders are: 

Dimensionality Reduction: Autoencoders can be used to reduce the dimensionality of 

data by learning a lower-dimensional representation of it. This can be useful in 

applications where high-dimensional data needs to be processed more efficiently or 

where the data is noisy and needs to be simplified. 

Image and Video Compression: Autoencoders can be used for image and video 

compression by encoding the image or video into a lower-dimensional representation 

and then decoding it back into the original format. 

Anomaly Detection: Autoencoders can be used to detect anomalies in data by 

comparing the reconstruction error of the input data and the output data. If the error is 

high, it means that the input data is an anomaly. 

Denoising: Autoencoders can be used to remove noise from data by learning a 

compressed representation of the data and then using it to reconstruct the data without 

the noise. 

Generative Models: Autoencoders can be used as generative models to generate new 

data that is similar to the training data. This can be useful in applications such as image 

synthesis or text generation. 

Recommendation Systems: Autoencoders can be used in recommendation systems by 

encoding user preferences and item features into a lower-dimensional representation 

and then using this representation to generate recommendations. Time Series Analysis: 

Autoencoders can be used to analyze time series data by learning a compressed 

representation of the data and then using it to forecast future values. 

Missing Value Imputation:- 

Denoising autoencoders can be used to impute the missing values in the dataset. The 

idea is to train an autoencoder network by randomly placing missing values in the input 

data and trying to reconstruct the original raw data by minimizing the reconstruction 
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loss. Once the autoencoder weights are trained the records having missing values can 

be passed through the autoencoder network to reconstruct the input data, that too with 

imputed missing features. 

Image Compression:- 

Image compression is another application of an autoencoder network. The raw input 

image can be passed to the encoder network and obtained a compressed dimension of 

encoded data. The autoencoder network weights can be learned by reconstructing the 

image from the compressed encoding using a decoder network. Usually, autoencoders 

are not that good for data compression, rather basic compression algorithms work 

better. 
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CHAPTER 4 

MODEL TRAINING 

 

4.1 KERAS And TensorFlow 

4.1.1 Introduction:- 

Keras is a Python-based open-source library for building neural networks that facilitates 

fast experimentation and smooth transition from research to production. Developed by 

François Chollet, a Google engineer, it has become popular due to its flexibility, user-

friendly interface, and ease of use. With a high-level API, Keras allows users to 

construct complex models using only a few lines of code and offers a wide range of 

built-in layers, activations, and loss functions to create various neural network 

architectures. It can work with various deep learning frameworks such as TensorFlow, 

Theano, Microsoft Cognitive Toolkit, and PlaidML and supports both CPU and GPU 

acceleration, making it ideal for large-scale deep learning projects. Overall, Keras is a 

powerful and versatile tool that is widely utilized by data scientists, researchers, and 

developers worldwide for building and training deep learning models. 

TensorFlow is an open-source software library that was created by the Google 

Brain team in 2015. It has since grown to become one of the most popular machine 

learning frameworks available. TensorFlow allows users to build and train machine 

learning models using various neural network architectures, including CNNs and 

RNNs. It offers built-in tools for data manipulation, visualization, and preprocessing to 

help users prepare their data for machine learning tasks. TensorFlow also supports 

distributed computing, enabling models to be trained across multiple machines and 

accelerators. The platform has an active community of users and developers who 

contribute to its library of tools and resources, including data-specific libraries and 

model interpretability and deployment tools. Overall, TensorFlow is a versatile and 

powerful framework suitable for various machine learning tasks, from basic 

classification and regression to more advanced natural language processing and 

computer vision applications. 
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Table 4.1: Keras VS Tensorflow 

Keras TensorFlow 

Keras is a high-level API that is 

running on top of TensorFlow, 

CNTK, and Theano. 

TensorFlow is a framework that offers both high 

and low-level APIs. 

Keras is easy to use if you know the 

Python language. 

You need to learn the syntax of using various 

TensorFlow functions. 

Perfect for quick implementations. Ideal for Deep learning research, and complex 

networks. 

Uses another API debug tool such as 

TFDBG. 

You can use Tensor board visualization tools for 

debugging. 

 

It was started by François Chollet as 

a project and developed by a group 

of people. 

It was developed by the Google Brain team. 

 

4.1.2 Advantages:- 

Keras:- 

Keras is a popular high-level neural network API that is built on top of lower-level 

machine learning frameworks like TensorFlow and Theano. Some of the advantages of 

using Keras include: 

Ease of Use: Keras provides a simple and intuitive interface for building neural 

networks. Its user-friendly design allows developers to easily define and train neural 

networks without having to worry about the underlying implementation details. 

Portability: Keras is designed to be highly portable and can run on a variety of 

platforms and hardware configurations. This makes it easy to deploy models to different 

environments and to take advantage of specialized hardware like GPUs. 
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Flexibility: Keras is highly flexible and allows developers to build a wide variety of 

neural network architectures, including convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and deep belief networks (DBNs). 

Modularity: Keras is designed to be modular, with a wide range of pre-built layers, 

loss functions, and optimizers that can be combined to create custom neural network 

architectures. 

Large Community: Keras has a large and active community of developers and 

researchers who contribute to the framework and provide support to other users. This 

makes it easy to find resources and solutions to common problems. 

Integration with TensorFlow: Keras is tightly integrated with TensorFlow, which 

allows developers to take advantage of TensorFlow's advanced features while still using 

Keras's user-friendly API. 

Tensorflow:- 

TensorFlow is a popular and powerful open-source library for building and deploying 

machine learning models. Some of the key advantages of using TensorFlow include: 

Scalability: TensorFlow is designed to be highly scalable, making it well-suited for 

large-scale machine learning applications. It can efficiently train and run models on 

large datasets and distributed computing systems. 

Flexibility: TensorFlow provides a flexible framework for building and training a wide 

range of machine learning models, including neural networks, decision trees, and 

support vector machines. This makes it a versatile tool for a wide range of applications. 

High Performance: TensorFlow is optimized for speed and performance, making it 

capable of handling complex models and large datasets with ease. It can take advantage 

of specialized hardware like GPUs and TPUs to further improve performance. 

Rich Ecosystem: TensorFlow has a large and active community of developers who 

contribute to the library and provide support to other users. This has led to the 

development of a rich ecosystem of tools, libraries, and resources that can be used to 

enhance TensorFlow and extend its functionality. 
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Easy to Use: TensorFlow provides a user-friendly interface that makes it easy to define, 

train, and deploy machine learning models. Its high-level APIs like Keras make it 

accessible to developers with varying levels of experience in machine learning. 

Platform Agnostic: TensorFlow can run on a variety of platforms, including desktop 

computers, mobile devices, and cloud servers. This makes it easy to deploy models to 

different environments and to take advantage of specialized hardware when necessary. 

Support for Multiple Languages: TensorFlow provides support for multiple 

programming languages, including Python, C++, and Java. This makes it accessible to 

a wide range of developers with different programming backgrounds. 

4.1.3 Disadvantages:- 

Keras:- 

While Keras is a popular and highly versatile neural network API, it does have some 

limitations and disadvantages that developers should be aware of: 

Limited Low-Level Control: While Keras provides a high-level interface that makes 

it easy to build neural networks quickly, it may not provide the level of control and 

customization needed for certain complex or specialized tasks. For example, low-level 

modifications to the optimizer may be difficult to implement in Keras. 

Performance Limitations: Although Keras can be optimized for speed, it may not be 

as efficient as lower-level frameworks like TensorFlow or PyTorch. This can become 

a concern when dealing with very large datasets or complex models. 

Limited Graph Customization: Keras has some limitations in terms of graph 

customization, which may be necessary for some specialized use cases. For example, it 

may be challenging to implement certain types of attention mechanisms or dynamic 

architectures in Keras. 

Compatibility Issues: As Keras is built on top of lower-level frameworks like 

TensorFlow and Theano, there may be compatibility issues with different versions of 

these frameworks. This can lead to challenges in reproducing models across different 

environments. 
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Limited Support for Non-Neural Network Models: While Keras is primarily 

designed for building neural networks, it may not be the best choice for other types of 

machine learning models. For example, decision trees or random forests may be better 

implemented using other libraries or frameworks. 

Tensorflow:- 

While TensorFlow is a powerful and versatile machine learning library, it does have 

some limitations and disadvantages that developers should be aware of: 

Steep Learning Curve: TensorFlow can have a steep learning curve for developers 

who are new to machine learning or unfamiliar with the library's API. It can take some 

time to become proficient in using the library effectively. 

Complex Architecture: TensorFlow's architecture can be complex, with many 

different components and abstractions to learn. This can make it challenging to debug 

and optimize models, especially for developers who are new to the library. 

Limited Support for Non-Neural Network Models: While TensorFlow is a powerful 

tool for building neural networks, it may not be the best choice for other types of 

machine learning models. For example, decision trees or random forests may be better 

implemented using other libraries or frameworks. 

Compatibility Issues: Different versions of TensorFlow may not be compatible with 

each other, leading to challenges in reproducing models across different environments. 

Additionally, some third-party libraries may not be compatible with certain versions of 

TensorFlow. 

Performance Limitations on Small Datasets: While TensorFlow is highly scalable 

and can handle large datasets with ease, it may not perform as well on smaller datasets. 

This can be a concern for developers who are working with limited data or resources. 

Lack of Transparency: TensorFlow's complexity can make it challenging to understand 

what is happening inside a model. This lack of transparency can make it difficult to 

debug and optimize models, especially for developers who are new to the library. 
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4.1.4 Applications 

Keras and TensorFlow are highly utilized in different fields for creating and implementing 

deep learning models. Some of the commonly used applications of Keras and TensorFlow 

are: 

Image and object recognition: Keras and TensorFlow are widely used for tasks such as 

image classification, segmentation, and object detection, which involve recognizing 

objects in images, detecting faces, and tracking objects in videos. 

Natural Language Processing (NLP): Keras and TensorFlow are also employed for 

constructing language models that can comprehend and generate human language. This 

encompasses tasks such as text classification, language translation, and sentiment analysis. 

Recommendation systems: Keras and TensorFlow can be leveraged to establish 

recommendation systems that suggest movies, products, or other items based on the users' 

preferences and behavior. 

Speech recognition: Keras and TensorFlow are utilized in developing speech recognition 

models that can transcribe speech into text and vice versa.Autonomous vehicles: Keras and 

TensorFlow are applied in creating autonomous vehicles, including object recognition, 

localization, and designing optimal routes. 

Medical diagnosis: Keras and TensorFlow can be utilized to develop models for 

identifying diseases and detecting irregularities in medical images. 

In summary, Keras and TensorFlow are highly versatile and user-friendly, making them 

ideal for various industries' deep learning model creation and implementation. 

4.2 CNN Overview & Applications 

4.2.1 Introduction:- 

Convolutional Neural Networks (CNNs) are a type of artificial neural network that are 

primarily used for analyzing visual imagery. They are designed to recognize patterns in 

images and classify them into different categories, such as identifying objects or 

detecting anomalies. 
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CNNs are made up of multiple layers that extract features from the input images. 

The first layer of a CNN is usually a convolutional layer that applies filters to the image 

to identify patterns and features. The output of the convolutional layer is then passed 

through a pooling layer, which reduces the dimensionality of the image and makes the 

subsequent layers faster to compute. The final layers of a CNN are typically fully 

connected layers that classify the features extracted from the image into different 

categories. 

One of the significant advantages of CNNs is their ability to learn hierarchical 

representations of images. This means that the network can identify simple features, 

such as edges and corners, and combine them to recognize more complex structures, 

such as faces or objects. 

CNNs have numerous applications, including image classification, object 

detection, facial recognition, and medical diagnosis. They have proven to be highly 

effective in these tasks and have been instrumental in the development of many 

advanced technologies. 

Overall, CNNs are a powerful tool for analyzing visual data and have opened 

up many possibilities for machine learning applications. 

4.2.2 Architecture:- 

The architecture of a Convolutional Neural Network (CNN) consists of multiple layers 

that work together to extract and classify features from input images. The typical layers 

in a CNN architecture are: 

Convolutional Layer: The first layer of a CNN applies a set of learnable filters to the 

input image to identify patterns and features in the image. Each filter produces a feature 

map, which is a transformed version of the input image that highlights specific features. 

ReLU Layer: The Rectified Linear Unit (ReLU) layer applies an element-wise 

activation function to the feature maps produced by the convolutional layer. The ReLU 

function sets negative values to zero, and leaves positive values unchanged, which 

introduces non-linearity into the network. 
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Fig 4.1: Feedforward Nerual Network With 2 Hidden Layers 

Pooling Layer: The pooling layer reduces the dimensionality of the feature maps 

produced by the convolutional layer. The most common type of pooling is max pooling, 

which selects the maximum value from a set of values in each sub-region of the feature 

map. 

Fully Connected Layer: The fully connected layer is a traditional neural network layer 

that takes the flattened output of the previous layers and performs classification or 

regression tasks. This layer uses the softmax activation function to predict the 

probability distribution of the output class. 

Dropout Layer: The dropout layer is used to prevent overfitting in the network. It 

randomly drops out a fraction of the connections between neurons during training, 

forcing the network to learn more robust and generalized features. 

The architecture of a CNN can vary depending on the specific task and dataset. 

However, most CNNs follow the general structure of these layers, with variations in the 

number of layers, filters, and parameters. By stacking multiple layers and combining 

them with non-linear activation functions, CNNs can learn hierarchical representations 

of features and classify images with high accuracy. 

Fig 4.2: Example of a CNN Architecture  
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Table 4.2 : Deep Learning VS Neural Network 

Deep Learning Neural Network 

Deep learning is an approach to AI and a 

technique that enables computer systems 

to improve with experience and data. 

Neural Networks are computational 

models inspired by the idea of how the 

nervous system works. 

It is a particular kind of machine learning 

method based on artificial neural 

networks. 

It is a biologically inspired network of 

neurons configured to perform certain 

tasks. 

Deep learning architecture is based on 

artificial neural networks. 

Neural Network consists of three layers: 

an input layer, an output layer, and a 

hidden layer. 

Deep learning architecture is one of the 

many applications of artificial neural 

networks. 

Neural Networks make great tools for 

pattern recognition, clustering, 

prediction and analysis, control and 

optimization, machine translation, etc. 

 

4.2.3 Advantages:- 

Convolutional Neural Networks (CNNs) have several advantages over traditional 

neural networks when it comes to processing and classifying image data. Some of the 

key advantages of CNNs are: 

Local connectivity: CNNs leverage the spatial relationships between pixels in an 

image by applying filters to local regions of the input image. This local connectivity 

allows the network to capture local patterns and features that are important for image 

classification. 

Parameter sharing: In traditional neural networks, each weight in the network is 

learned independently for each neuron. In contrast, CNNs apply the same set of filters 

across the entire input image, which allows the network to learn and reuse patterns 

across different regions of the image. This reduces the number of parameters needed 

to train the network, making it more efficient. 
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Translation invariance: CNNs are able to recognize objects in images regardless of 

their position or orientation. This is because the convolution operation is translation 

invariant, meaning that it can detect the same pattern regardless of where it appears in 

the input image. 

Hierarchical representations: CNNs use multiple layers of convolutional and 

pooling operations to learn hierarchical representations of features in an image. The 

lower layers capture simple features like edges and corners, while the higher layers 

capture more complex features like shapes and textures. 

Robustness to noise: CNNs are able to filter out noise and other irrelevant features in 

an image, making them more robust to variations in lighting conditions, background 

clutter, and other types of image noise. 

Overall, these advantages make CNNs highly effective for image classification 

tasks, and have led to their widespread adoption in computer vision applications. 

4.2.4 Disadvantages:- 

While Convolutional Neural Networks (CNNs) have several advantages, there are also 

some limitations and disadvantages that should be considered. Some of the key 

disadvantages of CNNs are: 

High computational requirements: CNNs can be computationally expensive to train 

and require a large amount of processing power and memory. This can make it difficult 

to train large models on low-end hardware or in resource-constrained environments. 

Large amounts of data required: CNNs require large amounts of labeled training data 

in order to learn effective representations of features in images. This can be a limiting 

factor in applications where labeled data is scarce or expensive to acquire. 

Difficulty with fine-grained classification: While CNNs are effective at recognizing 

broad categories of objects, they can struggle with fine-grained classification tasks 

where subtle differences between similar objects need to be detected. 

Limited interpretability: The hierarchical nature of CNNs can make it difficult to 

interpret the learned representations and understand how the network is making its 

predictions. This can be a limitation in applications where interpretability is important, 

such as in medical diagnosis or legal contexts. 
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Vulnerability to adversarial attacks: CNNs are susceptible to adversarial attacks, 

where small perturbations to an input image can cause the network to misclassify the 

image. This can be a concern in security-critical applications where the integrity of the 

model is important. 

Overall, while CNNs have many advantages and are highly effective for many 

computer vision applications, they are not a one-size-fits-all solution and should be 

carefully evaluated and optimized for each specific use case. 

4.2.5 Applications:- 

Convolutional Neural Networks (CNNs) find applications in diverse fields. They are 

often used in image and object recognition tasks for identifying objects in images, 

detecting and tracking objects in videos, and recognizing faces. CNNs also find their 

usage in Natural Language Processing (NLP) applications like sentiment analysis, text 

classification, and language translation. Moreover, CNNs are crucial in developing 

autonomous vehicles for object detection, localization, and path planning. In medical 

fields, CNNs can diagnose diseases and anomalies in medical images such as X-rays, 

MRIs, and CT scans. Robotics and video and audio analysis applications also employ 

CNNs for object recognition, localization, manipulation, speech recognition, synthesis, 

action recognition, and video summarization. With the ability to learn complex 

representations of data, CNNs have wide-ranging applications, and their state-of-the-

art performance is widely acclaimed in industry and research. 

4.3 Python 

4.3.1 Introduction:- 

Python is a protean high- position scripting language that's extensively used for colorful 

tasks similar as textbook processing, system administration, and internet- related 

conditioning. It stands out among analogous languages due to its small core language 

that's easy to learn, yet it allows the addition of modules to perform a vast range of 

functions. Python is also an object- acquainted language and is available on multiple 

platforms, with a Python practitioner indeed written entirely in Java. Python was created 
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in the early 1990s by Guido van Rossum, with the thing of designing a language that 

would be easy for newcomers to learn while being important enough for advanced 

druggies. Python's syntax is terse and clean, and its perpetration of object- acquainted 

programming is thorough, making it an excellent first programming language without 

immolating advanced capabilities. 

Although python is named after snakes, it was inspired by Guido van Rossum's 

favorite television show," Monty Python's Flying Circus." Python attestation and online 

coffers frequently have a light and humorous touch. Python has some distinct features 

that may be strange to programmers of other languages, similar as statements not 

demanding a special character to end and the use of indentation to indicate the presence 

of circles rather of delimiters. 

 It's pivotal to follow some rules while composing programs in Python, similar 

as harmonious indentation within a given depth of a circle and statements that aren't 

notched must begin in the first column. numerous Python programmers prefer to use an 

editor that automatically provides harmonious indentation. 

Table 4.3: Python VS Matlab 

Python Matlab 

It is a general-purpose programming 

language used to develop fully-fledged 

applications or other software tools. 

It is a commercial programming 

language interactive environment for 

numerical computing and programming. 

It used O-based indexing meaning the 

arrays are indexed from 0. 

It uses 1-based indexing meaning the 

arrays are indexed from 1. 

It determines the scope of a block based 

on indentation. 

It uses statements are closures. 

No interactive UI development platform. Interactive UI development platform. 

More expressive and readable than 

Matlab scripts. 

More comprehensive numerical 

functionality. 

Graphics relies on external packages. Graphical capabilities are more 

convenient. 
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4.3.2 Advantages:- 

Python has several advantages that make it a preferred language for many developers. 

One of the main benefits is its ease of use and learnability. With a syntax similar to the 

English language, Python is easy to learn and adapt to, particularly for beginners. 

Additionally, Python requires fewer lines of code compared to languages such as Java 

and C, resulting in increased productivity and faster execution of tasks. Another 

advantage of Python is its flexibility, allowing users to develop new types of 

applications and try new things without restrictions. Python also boasts an extensive 

library, including almost every function needed to perform various tasks, thanks to its 

supportive community and corporate sponsorship. Speaking of the community, Python 

has a mature community that supports developers at all levels, providing guides, 

tutorials, and documentation to help them understand and use the language more 

efficiently. As a result, Python continues to experience rapid growth in popularity 

compared to other programming languages. 

4.3.3 Disadvantages:- 

Although Python is a popular and widely used programming language, there are some 

potential drawbacks to consider. For example, because Python is an interpreted 

language, it may be slower than compiled languages like C or Java, especially when 

working with large datasets or building high-performance applications. Additionally, 

Python's Global Interpreter Lock (GIL) can limit the ability to scale multithreaded 

applications across multiple CPU cores, which can make it more challenging to take 

full advantage of modern hardware. Python's automatic memory management can also 

lead to slower performance and less predictable memory usage compared to languages 

that allow for manual memory management. Furthermore, Python may not be the best 

choice for mobile app development since it doesn't provide native support for mobile 

platforms like iOS or Android. However, many of these limitations can be addressed 

with the use of external libraries, frameworks, and tools, and Python's ease of use and 

large developer community make it a popular choice for many projects. 
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4.3.4 Tools:- 

Anaconda Navigator:- 

Anaconda Navigator is a graphical user interface (GUI) that comes with the Anaconda 

distribution of Python programming language. It provides an easy and intuitive way to 

manage and launch various data science and machine learning tools, environments, and 

packages from a single platform. It allows users to create and manage virtual 

environments, install and update packages, access Jupyter Notebook, and launch other 

popular data science tools like Spyder, RStudio, and VS Code. Anaconda Navigator 

simplifies the process of setting up and managing a Python data science environment, 

making it a popular choice among data scientists, machine learning engineers, 

and researchers . 

Spyder:- 

Spyder is a free and open-source Integrated Development Environment (IDE) that is 

specially designed for scientific programming in Python. It offers a user-friendly 

environment for interactive development, debugging, and testing of Python code. 

Spyder focuses on data science, numerical analysis, and scientific computing. Its 

features include a code editor with syntax highlighting, code completion, and an 

integrated debugging tool. Spyder also comes with an interactive console, which allows 

users to test code snippets and view the output in real-time. In addition, Spyder has 

built-in support for popular data science libraries like NumPy, SciPy, and Pandas. 

Overall, Spyder is a powerful IDE that can greatly benefit scientific programmers 

working with Python. 

Visual Studio Code:- 

Visual Studio Code (VS Code) is a popular, free, and open-source code editor created 

by Microsoft that is widely used by developers in various programming languages, 

including Python. It comes with a modern user interface and numerous functionalities 

that make it a versatile editor. The editor has a vast collection of extensions that can be 

utilized to customize its capabilities. VS Code has numerous functionalities that are 

useful for Python development, such as syntax highlighting, debugging, code 

completion, and Git integration. VS Code also supports Python-specific features such 
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as code refactoring, formatting, and linting with the installation of the Python extension. 

Overall, VS Code is a customizable and powerful code editor that is ideal for 

Python development. 

Google Colab:- 

Google Colaboratory (Google Colab) is a cloud-based platform that provides users with 

a free Jupyter notebook environment. It allows users to write, run, and share Python 

code from their browser without requiring any setup or installation. Google Colab 

provides access to powerful computing resources, including CPUs, GPUs, and TPUs, 

allowing users to run large-scale machine learning and deep learning models. It also 

has built-in support for popular Python libraries such as TensorFlow, PyTorch, and 

OpenCV. Google Colab is an excellent tool for collaborative coding as users can share 

their notebooks with others and work on them simultaneously. Additionally, Google 

Colab integrates with Google Drive, allowing users to save and access their notebooks 

from anywhere. Overall, Google Colab is a convenient and powerful platform for 

Python development and data science. 
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RESULTS 

 

 

    

(A)                                                         (B)                                                             (C) 

 

Fig5.1: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

                                                

                                 (A)                                                         (B)                                                             (C) 

                                                  

Fig5.2: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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 (A)                                                         (B)                                                             (C) 

 

Fig5.3: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

       

                                 (A)                                                         (B)                                                             (C) 

                                                  

Fig5.4: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 

 

 

 

 

 



46 
 

 

     

(A)                                                         (B)                                                             (C) 

 

Fig5.5: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

    

                                 (A)                                                         (B)                                                             (C) 

                                                  

Fig5.6: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

 

Fig5.7: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 
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Fig5.8: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.9: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

      

                                 (A)                                                         (B)                                                     (C) 

                                                  

Fig5.10: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.11: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

      

(A)                                                         (B)                                                        (C) 

                                                  

Fig5.12: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                             (B)                                                           (C) 

Fig5.13: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

      

(A)                                                                    (B)                                                      (C) 

                                                  

Fig5.14: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.15: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

        

                                 (A)                                                         (B)                                                             (C) 

                                                  

Fig5.16: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.17: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

     

                                 (A)                                                         (B)                                                             (C)                             

Fig5.18: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.19: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

     

                                 (A)                                                         (B)                                                    (C)                             

Fig5.20: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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(A)                                                         (B)                                                           (C) 

Fig5.21: (a)Grayscale image(input image) (b) Autoencoder output 

(c) Original image 

 

      

                                 (A)                                                         (B)                                                             (C)                             

Fig5.20: (a)Grayscale image(input image) (b) Caffe model output 

(c) Original image 
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Result Analysis 

Caffe Model:- 

Caffe model output contains the rust type color information if any image with white 

background along with the lightness information it will generate the output non-

rendering image with low visibility and low accuracy. 

This Caffe model works on L-channel only; it will file to predict the color channels. 

Autoencoder:- 

autoencoders outputs contain the color information with proper visibility and are good 

at passing the information on virus images like  

1.the virus is healthy or not 2. the virus color is changing to the respective health 

conditions or not etc... 

 We are training the model with some virus images with different colors of 

health environments and also we train the model with grayscale images and color 

images.during predicting the color information by passing the grayscale image as input 

to the model it will produce the color information that it predicts color channels like A-

channel and B-channel with good accuracy and with low mean square error(low loss). 

 whenever a grayscale image is applied as input to our model it will able to 

produce the RGB image with a reasonable understanding of the spatial relationship of 

color compared to the Caffe framework model from the results we analyzed the 

autoencoder technique will be able to produce the more color information as output 

than Caffe framework. 
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CONCLUSION 

 

 

The proposed work is implemented in python. we have a picture of old black and white 

images, microscopic images, and some ultrasound images we applied the convolutional 

learnable filters for the error occurrence from that we performed a loop of the same 

operation for getting high accuracy and quality of output colored images. the 

reestablished went under the decoder section. the CNN is trained with both color images 

and black & white images and classified image input for normal and abnormal 

conditions. we preprocess colored images to create grayscale images to use as the input 

for the model. our model is then trained with these grayscale images as input and the 

original colored images as output.so, if we feed the new unseen grayscale image to the 

model, it would be able to generate an RGB image with a reasonable understanding of 

the spacial relationship of color, etc. this work proves that image pre-processing like 

normalization and resizing of image and convolution of image segmentation, 

upsampling, downsampling and classification. the results show that mounting the color 

to each area of the picture with more accurate compared to the previously developed 

approaches. 
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FUTURE WORK 

Earth’s atmosphere alters and blocks the light that comes from space. Hubble 

orbits above Earth’s atmosphere, which gives it a better view of the universe 

than telescopes have at ground level. 

Hubble transmits about 140 gigabytes of science data every week back to Earth. 

That's equal to about 45 two-hour, HD-quality movies or about 30,000 mp3 

songs. The digital signals are relayed to satellites, then to a ground station, then 

to NASA's Goddard Space Flight Center, and finally to the Space Telescope 

Science Institute. The STScI translates the data into images and information we 

can understand. 

Hubble pictures start out as shades of black and white. The Space Telescope 

Science Institute adds colors to the pictures for different reasons. Sometimes 

colors are chosen to show how an object might look to the human eye. Other 

times colors are used to highlight an important detail. Or they can be used to 

show details that would otherwise be invisible to the human eye. 

To get colorized image from hubble telescope it requires large electronic filter 

and it increses the cost so,our autoencoder technique will be used for getting 

color images of telescopes by changing A and B channels with some 

mathematical operations we hope that it will give color image as output with 

low cost. 
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